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1. Executive	Summary	

In	2010,	Mexico	ranked	8th	among	countries	with	the	largest	area	of	primary	forest	(FAO	
2010).	Mexico’s	forests,	covering	about	a	third	of	the	nation,	provide	a	number	of	services	including	
carbon	sinks,	high	levels	of	endemism	and	species	richness,	and	subsistence	resources	for	local	
population.	These	services	are	being	eroded	as	Mexico	continues	to	experience	forest	cover	loss.	
Mexico	has	lost	about	half	its	forest	area	since	1950.	From	2005‐2010,	the	country	maintained	an	
average	deforestation	rate	of	0.24%	according	to	FAO,	reducing	its	capacity	for	carbon	
sequestration	and	increasing	land	conversion	related	emissions.	Land	use,	land‐use	change	and	
forestry	was	recently	estimated	to	emit	about	10%	of	Mexico’s	total	GHG	emissions.	

The	Mexico‐REDD	Alliance	(MREDD)	is	supporting	Mexico’s	efforts	to	reduce	its	emissions	
from	deforestation	and	forest	degradation	and	to	enhance	forest	carbon	stocks	are	currently	
supported	by.	The	program	has	identified	Early	Action	Areas	(Áreas	de	Acción	Temprana	or	AATR),	
or	high	risk	–	high	reward	areas	located	in	Mexican	states	that	are	recognized	as	having	high	
biodiversity,	cultural	diversity	as	well	as	high	rates	of	deforestation.				Research	related	to	forest	
cover	loss	in	Mexico	has	so	far	focused	on	drivers	of	deforestation,	including	the	impact	of	land	
ownership	types	unique	to	the	country	(community	forestry,	protected	areas,	and	private	lands).	
Missing	from	the	sizeable	literature	are	two	topics	of	particular	importance	for	the	identification	of	
vulnerable	regions	and	the	design	of	conservation	strategies	under	MREDD:	the	first	is	an	analysis	
of	drivers	of	deforestation	that	is	specific	to	the	AATRs.	The	second	is	an	analysis	of	the	effect	of	
geographic	characteristics	or	policy	measures	that	is	disaggregated	by	land	ownership	type.		

To	help	address	these	gaps,	we	conduct	a	series	of	analyses	that	combine	both	national	and	
local	scale	modeling	to	aid	the	MREDD	Alliance	partners	in	assessing	the	vulnerability	of	Mexico’s	
forests	to	deforestation.	These	analyses	focus	on	the	vulnerability	of	forested	lands	within	Mexico’s	
AATRs,	accounting	for	Mexico’s	unique	forest	management	dynamics	through	disaggregating	the	
results	by	land	ownership	types.	These	analyses	are	ultimately	meant	to	inform	national	and	
subnational	policy,	paving	the	way	for	incentive	based	programs,	and	ultimately	reduced	
deforestation	vulnerability	in	Mexico.			Our	methodology	includes	three	different	and	
complementary	approaches:	(i)	reviewing	the	existing	literature,	(ii)	a	national	econometric	
analysis	and	associated	scenario	simulation	modeling,	and	(iii)	local‐level	spatial	spatial	modeling	
for	each	AATR.			Key	findings	from	each	of	these	three	parts	of	the	report	are	summarized	below.		

1.1.Key	Findings	

Literature	Review	of	Drivers	of	Deforestation	in	Mexico.		

 While	deforestation	has	decreased	over	the	past	decades,	forest	loss	continues	at	about	
0.24%	per	year,	accoriding	to	UN‐FAO,	generating	about	6%	of	the	country’s	total	
greenhouse	gas	emissions	in	2010.		Deforestation	is	mostly	occurring	in	the	more	densely	
forested	areas	of	south‐eastern	Mexic	and		largely	attributed	in	the	literature	to	crop	and	
cattle	development.	
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 Land	tenure	(community	land	management,	including	ejidos),	rural	agricultural	support,	
and	payments	for	ecosystems	services	are	major	focuses	of	the	literature.	Conclusions	on	
the	role	of	the	major	land	tenure	type	in	Mexico,	community	land	management,	are	mixed.	
Studies	are	also	in	disagreement	on	the	role	of	such	rural	agricultural	support	programs	as	
PROCAMPO.		

 Most	studies	agree	that	payments	for	ecosystems	services	decrease	deforestation	risk,	with	
some	caveats	related	to	regional	differences	and	starting	deforestation	risk.		

 These	relationships	were	mirrored	in	the	meta‐analysis:	regression	results	were	mixed	for	
ejidos	and	rural	income	support,	while	results	for	PES	tended	to	be	associated	with	
decreased	deforestation.	Furthermore,	results	from	the	meta‐analysis	revealed	other	
variables	with	consistent	relationships	to	deforestation	in	Mexico.	The	variables	most	
associated	with	reduced	deforestation	in	Mexico	were	associated	with	protection	measures	
(as	proxied	by	protected	areas	and	PES),	reduced	accessibility	(elevation),	reduced	resource	
competition	(property	size)	and	community	forestry.	

 The	variables	most	associated	with	increased	deforestation	were	related	to	areas	where	
economic	returns	to	agriculture	are	higher	(proximity	to	agriculture	and	agriculture	
returns),	biophysical	conditions	for	conversion	are	favorable	(soil	suitability),	and	
competition	for	resources	are	high	(population).		

 Most	of	these	relationships	were	robust	when	results	were	disaggregated	to	the	Yucatán	
Peninsula.	Notably	however,	at	the	national	level,	poverty	appears	to	be	linked	to	increases	
in	deforestation,	while	in	the	Yucatán	Peninsula	poverty	is	associated	with	decreased	
deforestation.	Conversely,	indigenous	population	is	associated	with	decreased	
deforestation.	

National	Analysis	of	Deforestation	in	Mexico.		

 The	national	analysis	reveals	that	a	critical	driver	of	deforestation	has	been	the	anticipated	
economic	returns	from	land	conversion,	specifically	from	agriculture	as	proxied	by	crop	
production	in	our	study.			Key	factors	modulating	deforestation	vulnerability	include	land	
ownership	type	and	initial	forest	area	within	a	grid	cell.		

 We	estimate	the	responsiveness	of	gross	deforestation	to	changes	in	net	economic	
incentives	for	land	conversion.		A	1%	decrease	in	potential	agricultural	returns	over	2000‐
2012	would	have	decreased	cumulative	gross	deforestation	nationally	over	this	period	by	
an	estimated	0.24%.		Conversely,	a	1%	increase	would	have	boosted	gross	deforestation	by	
an	estimated	0.26%.			Similarly,	a	10%	decrease	in	potential	agricultural	returns	over	2000‐
2012	would	have	decreased	cumulative	gross	deforestation	nationally	over	this	period	by	
an	estimated	2%.		Conversely,	a	10%	increase	would	have	raised	gross	deforestation	by	an	
estimated	3.3%.				

 A	preliminary	examination	suggests	that	decreasing	potential	crop	returns	(or	increasing	
benefits	to	low	emissions	activities	that	avoid	deforestation)	by	the	amount	of	PROCAMPO	
subsidies	on	ejidos	and	agrarian	community	lands	would	have	decreased	deforestation	by	
about	5%	over	2000‐2012.			
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 Based	on	the	economic	profitability	of	agriculture	and	starting	forest	cover	in	2012,	the	
model	predicts	an	overall	27%	“business‐as‐usual”	increase	in	annual	deforestation	in	
Mexico	over	the	next	ten	years,	relative	to	2000‐2012.				

 On	the	one	hand,	there	is	relatively	high	sensitivity	to	agricultural	returns	and	high	
estimated	future	vulnerability	to	deforestation	among	forest	remants	in	areas	with	
relatively	sparser	forest	cover,	including	in	the	Northwest	and	Bajio	and	Northeast	regions.		
Comunidades	and	protected	areas	were	the	land	types	projected	to	have	the	biggest	
proportional	increase	in	forest	losses	over	the	next	10	years	and	are	also	estimated	to	have	
the	greatest	percent	declines	in	response	to	a	potential	carbon	incentive.				

 The	most	sensitive	areas,	however,	are	not	that	important	in	absolute	terms.		The	greatest	
amount	of	deforestation	is	projected	to	occur	in	the	South	and	Yucatan	Peninsula	region,	as	
well	as	within	ejidos	and	private	land	types.			These	areas,	particularly	the	Yucatan	
Peninsula,	hold	the	lion’s	share	of	estimated	potential	for	reducing	deforestation	and	
emissions.		

 The	seven	AATRs	are	not	all	concentrated	in	the	areas	with	the	highest	projected	future	
deforestation,	and		some	of	sites	are	located	in	areas	with	low	historical	rates	of	forest	loss,	
compared	to	the	national	average.		Nevertheless,	overall	as	a	group,	AATRs	and	their	
surrounding	regions	have	higher	projected	deforestation	increases	than	other	forested	
areas	nationally,	as	well	as	regionally,	as	well	as	the	majority	of	the	potential	to	cost‐
effectively	avoid	deforestation.		

 We	use	our	statistical	parameters	to	estimate	national	and	regional	carbon	emissions	cost	
curves,	based	on	a	hypothetical	carbon	incentive	focusing	only	on	above‐ground	forest	
carbon.		We	find	that	there	is	rising	potential	nationally	to	reduce	emissions	at	costs	ranging	
from	$5	to	$100/ton	CO2,	at	which	point	about	90%	of	the	emissions	are	avoided.			About	
half	of	the	estimated	reductions	available	at	prices	of	$10/ton	CO2	or	below	and	more	than	
two	thirds	of	the	estimated	reductions	available	at	prices	of	$20/ton	CO2	or	below.		The	
national	and	regional	cost	curves	are	rising	at	an	increasing	rate,	indicating	that	it	costs	
more	and	more	to	avoid	deforestation	on	lands	with	greater	agricultural	potentials.			 

Local	Modeling	of	Deforestation	in	Mexico.		

 Judging	from	the	projected	deforestation	scenarios,	the	greatest	benefits	from	
implementing	REDD+	or	another	incentive	based	conservation	activity	would	be	felt	in	
AATR	sites	that	are	primarily	unfragmented	forest,	meaning	that	they	still	contain	large	
areas	of	undisturbed	core	forest,	and	are	experiencing	frontier	expansion,	usually	stemming	
from	population	centers	or	access	points.		Sites	such	as	Sierra	PUCC	Chene	and	Oaxaca	
Istmo	display	these	characteristics	as	compared	to	sites	like	Oaxaca	Mixteca	or	Sierra	
Raramuri	which	are	highly	fragmented	and	experience	lower	rates	of	deforestation.	

 Variables	related	with	accessibility	and	markets	were	most	influential	in	the	less	
fragmented	reference	regions,	while	variables	related	to	biophysical	suitability	were	most	
influential	in	the	fragmented	sites.		The	variable,	distance	to	megacites,	was	important	in	
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the	two	regions	that	contained	them	(Sierra	Rararmuri	near	Culiacun	and	Cutzemala	Valle	
Bravo	near	Toluca).	

 There	may	be	multiple	patterns	of	forest	change	present	in	the	reference	regions;	loss	of	
primary	forest,	loss	of	secondary	forest,	fallow	rotations	and	agro‐forestry.		Models	could	be	
strengthened	by	addressing	these	separately	or	focusing	on	a	particular	pattern.	

 The	interpretation	of	the	local	models	should	include	both	the	soft	and	hard	predictions	
under	the	various	scenarios	as	well	as	the	general	pattern	of	the	soft	transition	surface.	

 Future	work	could	include	a	more	thorough	examination	of	the	effects	of	land‐use	practices	
within	comunidades	and	ejidos,	as	these	designations	had	some	influence	over	the	models,	
however	the	results	were	mixed.	
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2. 	Introduction	

2.1.	Global	Greenhouse	Gases	and	Mexico’s	Forests	

Greenhouse	gas	emissions	from	agriculture,	forestry	and	other	land‐use	activities	account	
for	an	estimated	24%	of	global	emissions,	second	only	to	emissions	produced	by	fossil	fuel	
combustion	(IPCC	5th	Assessment	Report,	2014).		In	1990,	official	estimates	are	that	deforestation,	
forest	degradation,	and	other	land‐use	changes	in	Mexico	produced	over	100	MtCO2e	of	emissions	
per	year,	accounting	for	18.2%	of	national	emissions.		More	recently	in	2010,	forests	and	land‐use	
changes	produced	close	to	47	MtCO2e	or	about	6.3%	of	total	emissions			(SEMARNAT/INECC,	
2012).		Mexico	is	currently	undertaking	efforts	to	reduce	its	emissions	from	deforestation	and	
forest	degradation	and	to	increase	sequestration	by	enhancing	forest	carbon	stocks	(REDD+),	
supported	by	the	Mexico‐REDD	(MREDD)	Alliance	program.1			Crucial	to	the	success	of	anti‐
deforestation	policies	is	an	understanding	of	how	spatial	variation	in	geographic	characteristics,	
land	ownership,	economic	profitability,	and	policy	measures	affect	Mexico’s	vulnerability	to	forest	
cover	loss.		It	is	also	important	to	understand	how	potential	changes	in	these	factors	over	time	
might	affect	deforestation	in	the	future.			

Mexico	has	lost	roughly	half	its	forest	area	since	1950.		From	2005	to	2010,	the	country	lost	
155,000	hectares	of	forest	cover,	an	average	deforestation	rate	of	0.24%	(FAO,	2010).		Forest	
conservation	in	Mexico	provides	biodiversity	co‐benefits	beyond	climate,	as	the	country	boasts	
both	high	levels	of	endemism	and	species	richness	(Barsimantov	&	Kendall,	2012).		While	
deforestation	rates	have	decreased	and	reforestation	efforts	are	evident	(FAO,	2010),	widespread	
deforestation	continues	to	threaten	communities	and	ecosystems	that	depend	on	forests.		There	is	a	
need	to	better	understand	deforestation	in	Mexico	to	identify	vulnerabilities	and	inform	policies	
that	aim	to	reduce	forest	loss.		

2.2.	Report	Outline	

Missing	from	the	sizeable	literature	on	land‐use	change	in	Mexico	are	two	topics	of	
particular	importance	for	the	identification	of	vulnerable	regions	and	the	design	of	and	low‐
emissions	development	strategies	under	MREDD:	the	first	is	an	analysis	of	drivers	of	deforestation	
that	is	specific	to	the	REDD+	early	action	areas	(AATRs)	under	the	MREDD	program.	2		The	second	is	
an	analysis	of	the	effect	of	geographic	characteristics	or	policy	measures	that	is	disaggregated	by	
land	ownership	type	(e.g.	ejido,	protected	area,	private	lands).	

																																																													
1	The	Allianza	MREDD+	is	a	partnership	of	The	Nature	Conservancy,	Rainforest	Alliance,	the	Woods	Hole	
Research	Center,	Mexico’s	government,	and	civil	society	to	help	lay	the	basis	for	efforts	to	reduce	emissions	
from	deforestation,	forest	degradation,	and	other	forestry	activities	(i.e.	REDD+).	(see:	www.alianza‐
mredd.org)	
2 Áreas	de	Acción	Temprana	(AATR)	are	REDD+	Early	Action	areas	located	in	Mexican	states	with	high	
biodiversity,	cultural	diversity	and	high	rates	of	deforestation,	but	also	great	REDD+	potential.	Lessons	
learned	in	these	subnational	target	areas	could	help	scale	up	best	practices.	
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To	address	these	gaps,	we	conduct	a	series	of	analyses	that	combine	both	national	and	local‐
scale	modeling	to	support	the	MREDD	Alliance	partners	in	assessing	the	vulnerability	of	forested	
lands	to	deforestation	in	Mexico,	focusing	on	the	vulnerability	of	forested	lands	within	Mexico’s	
AATRs,	with	the	results	disaggregated	by	land	ownership	types.		The	goal	is	to	inform	national	and	
subnational	policy,	paving	the	way	for	incentive	based	programs,	and	ultimately	reduced	
deforestation	vulnerability	in	Mexico.		Our	analysis	only	considered	forest	losses,	rather	than	gains,	
due	to	data	limitations.		While	increasing	forest	gains	could	be	an	important	piece	of	REDD+	
programs,	a	focus	on	avoiding	deforestation	should	capture	the	largest	near‐term	opportunities	for	
reducing	net	emissions	from	forests.			

This	project	generated	several	analytic	results	as	well	as	data	products,	including:	

‐ A	vulnerability	dataset:	a	spatially	explicit	raster	dataset	in	which	each	cell	has	a	value	
indicating	the	relative	risk	of	future	deforestation,	both	at	the	national	and	regional	scale.	

‐ A	future	deforestation	projection:	a	spatial	dataset	projecting	locations	of	future	
deforestation	as	a	function	of	the	vulnerability	dataset	and	predicted	rates	of	future	
deforestation.	

‐ A	database	of	all	variables	in	the	modeling	analyses.	
‐ A	database	of	econometric	studies	of	the	drivers	of	deforestation	in	Mexico	(and	other 

countries.	
	
This	report	describes	our	vulnerability	analysis	and	key	findings,	along	with	the	methods	

used	to	generate	the	“soft”	and	“hard”	deforestation	projections‐‐the	vulnerability	map	and	
deforestation	projections,	respectively.		Our	methodology	includes	three	different	and	
complementary	approaches:	(i)	reviewing	the	existing	literature,	(ii)	conducting	a	national	
econometric	analysis	and	building	an	associated	policy	simulation	model,	and	(iii)	conducting	local‐
level	spatial	analyses.		The	flow	diagram	in	Figure	2.2.1	illustrates	the	role	of	the	different	
project	components	and	associated	inputs	and	outputs.					

We	present	and	discuss	the	main	results	from	each	of	these	three	underlying	analyses.		The	
modeling	included	testing	the	predictive	power	of	a	series	of	individual	“driver”	datasets,	which	
may	or	may	not	actually	cause	deforestation,	but	are	potentially	correlated	with	it.		We	discuss	the	
relative	predictive	power	of	the	different	driver	datasets,	with	special	focus	on	their	correlation	
with	the	spatial	distribution	of	historic	and	projected	deforestation	with	each	of	the	seven	
identified	AATRs.		We	also	seek	to	understand	how	deforestation	might	change	causally	in	the	
future	with	changes	in	the	economic	incentives	governing	forest	cover	loss.	

The	first	approach	is	a	literature	review	and	meta‐analysis	of	existing	studies	of	
deforestation	and	land‐use	change	in	Mexico	and	elsewhere	globally	to	identify	trends,	
contradictions,	and	to	provide	context	on	land‐use	decision‐making	in	Mexico,	as	well	as	in	other	
countries	(Ferretti‐Gallon	&	Busch,	2014).		This	review	uncovers	gaps	in	the	literature,	informs	the	
selection	of	driver	variables	for	the	national	and	local	modeling	described	below,	and	provides	
context	for	evaluating	the	modeling	results.	
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The	second	approach	models	the	impact	of	different	drivers	of	land‐use	change	at	the	
national	scale,	to	complement	and	provide	inputs	to	the	local	analyses	conducted	using	the	IDRISI‐
Selva	Land	Change	Modeler	(LCM).		The	national	analysis	for	Mexico	adapts	the	approach	of	the	
Open	Source	Impacts	of	REDD+	Incentives	(OSIRIS)	model,	which	was	developed	for	analyzing	the	
impact	of	alternative	REDD+	policies	in	Bolivia,	Madagascar,	Peru	and	Indonesia	(Busch,	et	al.,	
2012).3		Our	national	analysis	for	Mexico	focuses	on	identifying	the	impact	of	one	variable	that	is	
arguably	of	causal	importance	for	deforestation:	the	net	economic	returns	per	hectare	from	
converting	land	from	forest	to	non‐forest	land	uses.		Using	this	larger	geographic	scale	is	especially	
important	to	capture	broader	variation	in	economic	variables	in	order	to	explicitly	measure	the	role	
of	changing	economic	returns	from	competing	land	uses.		In	particular,	we	model	deforestation	in	
relation	to	variation	in	estimated	gross	agricultural	revenues	and	proxies	for	fixed	and	variable	
costs	using	observable	site	characteristics.		The	estimated	responsiveness	to	the	economic	
profitability	of	agricultural	land	use	provides	the	basis	for	simulating	deforestation	under	
alternative	scenarios	with	different	economic	incentives	for	forest	protection,	including	the	effect	of	
potential	REDD+	policies.	

The	national	simulation	yields	an	estimated	deforestation	vulnerability	map	at	the	national	
scale	at	a	900m	resolution.		We	use	the	national	econometric	model	to	conduct	a	series	of	
simulations	that	yield	regional	predictions	of	deforestation	under	a	business‐as‐usual	(BAU)	
reference	scenario	as	well	as	a	set	of	hypothetical	policy	cases.		These	regional	predictions	provide	
an	input	to	the	local	scale	analyses	to	make	predictions	on	future	dynamics	of	forest	cover	at	seven	
AATRs.		

The	third	approach	uses	LCM	in	order	to	draw	on	its	predictive	spatial	modeling	capacity	to	
more	finely	disaggregate	the	regional	results	across	the	landscape	in	the	local	study	areas.		For	each	
of	the	seven	AATRs,	the	LCM	models	examine	the	relationship	between	potential	driver	variables	
and	observed	patterns	of	deforestation.		These	models	generate	a	“soft”	vulnerability	map	as	well	as	
a	“hard”	prediction	of	deforestation	under	a	series	of	historical	and	alternative	scenarios,	informed	
by	the	more	aggregate	predictions	of	the	national	level	model.			

The	empirical	analyses	in	this	study	use	a	new	global	dataset	from	the	University	of	
Maryland,	based	on	Landsat	satellite	information,	just	released	in	January	of	this	year	(Hansen,	et	
al.,	2013).		To	our	knowledge,	this	study	is	the	first	econometric	study	to	exploit	the	rich	spatial	
detail	and	multiple	time	periods	from	these	new	data.		As	such,	results	from	our	analysis	and	
approach	for	Mexico	could	provide	insights	for	analyzing	deforestation	in	other	countries	and	
regions	as	well.			

																																																													
3	The	Open	Source	Impacts	of	REDD+	Incentives	(OSIRIS)	model	is	a	suite	of	free,	transparent,	open‐source,	
spreadsheet‐based	decision	support	tools.		OSIRIS	goes	beyond	predictions	of	the	spatial	distribution	and	rate	
of	future	deforestation	to	estimate	and	map	the	climate,	forest	and	revenue	benefits	of	alternative	policy	
decisions	for	REDD+.			See:	http://sp10.conservation.org/osiris/Pages/overview.aspx	
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This	report	is	divided	into	6	sections.		Section	3	describes	the	literature	review	of	drivers	of	
deforestation	in	Mexico.		Section	4	discusses	the	national‐scale	econometric	analysis.		Section5	
presents	the	local	modeling	for	the	AATRs.		Section	6	concludes.			
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Figure	2.2.1.	Project	Flowchart	
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3. Literature	Review	of	Drivers	of	Deforestation	in	Mexico	

3.1.	Introduction		

We	compiled	a	database	of	econometric	studies	of	deforestation,	including	117	
studies	globally,	of	which	23	studies	focus	on	Mexico.		Appendix	Table	A‐1	provides	an	
annotated	bibliography	of	the	Mexico	studies.		From	our	analysis,	driver	variables	
associated	with	lower	rates	of	deforestation	in	Mexico	included	protected	areas,	community	
forestry,	and	payments	for	ecosystems	services.		Driver	variables	associated	with	higher	
rates	of	deforestation	in	Mexico	include	agricultural	activity,	population,	soil	suitability	and	
proximity	to	urban	area.	These	associations	between	different	“drivers”	and	deforestation	
do	not	necessarily	indicate	causal	relationships.	Causal	studies	of	protected	areas	in	Mexico	
have	found	these	territories	to	be	linked	with	decreased	deforestation.		Causal	studies	of	
ejidos	have	not	been	performed,	suggesting	the	need	for	further	study.	

3.2.	Overview	of	deforestation	

3.2.1.	Deforestation	in	Mexico	

All	known	categories	of	Mexican	forest	cover	(tropical	dry,	tropical	wet,	and	
montane	forests)	have	been	subject	to	deforestation	(Vaca,	et	al.,	2012).	Deforestation	is	
occurring	mostly	in	Southern	Mexico,	with	the	highest	rates	occurring	in	the	states	of	
Campeche	and	Quintana	Roo.		While	recent	studies	observe	a	pattern	of	net	deforestation	in	
Mexico	(Vaca,	et	al.,	2012),	recently	the	nation’s	total	annual	deforestation	has	decreased.	
Between	1990	and	2000,	Mexico	lost	354,000	ha/year;	from	2000	to	2005,	the	area	
deforested	annually	had	decreased	to	235,000;	and,	from	2005‐2010,	Mexico’s	forest	loss	
further	declined	to	155,000	ha	per	year	(FAO,	2010).			

Reforestation	has	occurred	in	some	regions	of	Mexico	(about	178,000	ha/year	from	
1990‐2010)	(FAO,	2010).	This	trend	has	been	attributed	to	planted	forests	with	production	
as	their	primary	function	(FAO,	2010).	Reforestation	through	tree	plantations	is	a	result	of	
increased	demand	for	oil	palm,	eucalyptus,	and	citrus	products.	Regeneration	of	forest	
cover	is	also	seen	as	a	result	of	passive	transition,	where	farmers	abandon	land	and	migrate	
to	areas	with	better	paid	farm	jobs.	It	can	also	be	a	result	of	active	transition,	in	which	the	
growing	scarcity	of	forest	products	encourage	governments	and	land	owners	to	plant	trees,	
i.e.	sustainable	community	forest	management	(Vaca,	et	al.,	2012).	There	is	little	evidence	of	
natural	forest	regeneration.	

Although	the	deforestation	rate	in	Mexico	has	declined,	widespread	forest	cover	loss	
persists.	Most	deforestation	processes	are	attributed	to	agriculture	(mainly	coffee,	maize,	
beans,	and	sugar	cane)	and	cattle	development.	Other	historic	drivers	of	deforestation	have	
included	human	settlement,	monoculture	forestry	(in	Southern	Mexico)	and	natural	
phenomena	(e.g.,	hurricanes	and	fires	in	the	Yucatán)	(Vaca,	et	al.,	2012).	Population	
growth,	poverty,	and	physiogeographic	variables	are	claimed	to	be	significant	drivers	of	
forest	loss	in	Mexico	(Barsimantov	&	Kendall,	2012).	However,	literature	on	the	subject	
renders	conflicting	conclusions	on	the	effects	on	deforestation	of	other	driver	variables,	
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including	land	ownership,	subsidy	programs,	road	density	and	per	capita	income	
(Barsimantov	&	Kendall,	2012).	

3.2.2.	Deforestation	in	the	Yucatán	

In	Mexico,	most	of	the	Gulf	Coast	lowlands	have	already	been	deforested,	and	
significant	land	clearance	occurred	in	the	interior	Lacandon	forests	of	Chiapas	(Turner	II,	et	
al.,	2001).		The	forests	of	southern	Campeche	and	Quintana	Roo	have	been	considered	the	
last	frontier	in	the	“west	to	east	movement	of	tropical	lowland	development”	in	Mexico	
(Turner	II,	et	al.,	2001).		The	Southern	Yucatán	has	been	identified	as	a	deforestation	hot	
spot	(Rueda,	2010).	It	is	considered	to	be	one	of	the	world’s	important	forested	regions,	
characterized	by	the	Calakmul	Bisophere	Reserve	and	the	Mesoamerican	Biological	
Corridor	(Busch	&	Geoghegan,	2010).		It	is	therefore	crucial	to	understand	drivers	of	land‐
use	and	land‐cover	change	in	the	region.	 	

3.3.	Overview	of	land	tenure,	rural	agricultural	support,	and	payments	for	
ecosystems	services	in	Mexico	

3.3.1.	Land	Tenure	

Mexico	has	a	long	history	of	policy	reforms	focused	on	property	rights	and	the	role	
of	land	tenure	on	land	cover	change	(Bonilla‐Moheno,	et	al.,	2013).		There	are	three	types	of	
land	management	in	Mexico:	Private,	public	(protected	areas,	public	enterprises,	etc.),	and	
communal	(comunidades	agrarias	and	ejidos).			

3.3.1.1.	Private	lands	

As	of	2011,	private	lands	that	are	owned	and/or	managed	by	companies,	
sharecroppers,	and	landless	rural	population	represent	37%	of	the	Mexican	agrarian	
landscape.	These	private	lands,	however,	only	encompass	26%	of	the	country’s	forests	
(Corbera,	et	al.,	2010).	

3.3.1.2.	Public	Lands	 	

Public	lands,	in	turn,	belong	to	federal	or	regional	public	agencies,	as	well	as	to	
public	enterprises.		These	lands	represent	just	over	8%	of	the	agrarian	landscape	and	cover	
only	4%	of	forested	areas,	primarily	including	protected	areas	and	bodies	of	water	
(Corbera,	et	al.,	2010).		

3.3.1.3.	Communal	Lands	

Lands	under	common	management	is	the	most	common	type	of	management,	
representing	52%	of	the	Mexican	agrarian	landscape	and	70%	of	the	forests	(Corbera,	et	al.,	
2010).	There	are	two	main	types	of	tenure	arrangements:	comunidades	agrarias	(agrarian	
communities)	and	ejidos.	Comunidades	agrarias	refer	to	repatriated	indigenous	lands	and	
ejidos	are	lands	granted	by	the	postrevolution	government	(Barsimantov	&	Kendall,	2012).	
Both	are	communally	owned	lands.	Nucleos	Agrarios	is	a	general	term	for	ejidos	and	
comunidades	agrarias	in	Mexico.		Carrillo	and	Mota‐Villanueva	(2006)	explain	that	this	
generalization	is	based	on	shared	characteristics	like	legal	status	and	land	ownership	given	
by	Presidential	Act	or	by	the	High	Agrarian	Court	of	Justice.	
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A.	History	of	Communal	Lands	

A.a	Comunidades	agrarias	

The	Spanish	Crown	granted	these	land	rights	to	groups	considered	original	settlers.		
The	communities	that	developed,	therefore,	consist	of	people	who	have	historically	
inhabited	a	region	and	share	language,	traditions	and	governing	institutions.		Land	holder	
types	in	this	form	of	management	consist	of	agrarian	communities	and	individual	rights	
holders	(comuneros).	Forest	regulation	is	governed	by	a	communal	assembly	made	up	of	all	
comuneros	(some	of	whom	may	be	women).		A	council	of	authorities	is	renewed	
periodically,	normally	every	three	years	(Corbera,	2010).		

A.b	Ejidos	

Ejidos,	on	the	other	hand,	are	a	more	specific	form	of	land	management	than	
comunidades	agrarias.		They	were	established	when	a	group	of	families	claims	rights	over	a	
territory,	and	the	parcel	of	land	granted	to	these	groups	remains	under	communal	
ownership.		Any	rental	or	land	sales	are	prohibited.			Land	can	only	be	given	by	one	ejido	
landholder	(ejidatario)	to	a	single	descendant.			Forest	and	land	for	pasture	(for	fuelwood	
collection,	timber	harvesting	and	grazing)	are	usually	managed	in	common.		Forest	for	
timber	harvesting,	in	particular,	is	organized	through	community	members	and	groups,	or	
through	external	concessions.		Ejido	timber	concessions	are	organized	through	extraction	
quotas	and	corresponding	benefits	are	defined	and	distributed	through	the	ejido	assembly	
and/or	the	council	of	authorities.			

Both	comunidades	agrarias	and	ejidos	have	members	(avecindados)	who	have	been	
given	a	parcel	to	farm	and	another	to	live	on,	but	who	do	not	have	rights	to	benefits	from	
the	forest.		It	is	estimated	that	there	are	over	30,000	agrarian	communities	and	ejidos	in	the	
country,	occupying	over	50%	of	the	total	national	territory	(PROCEDE,	2010).		Community	
land	management	in	Mexico	is	often	claimed	to	have	positive	environmental	and	
socioeconomic	outcomes	(Barsimantov	&	Kendall,	2012).	

B.	History	of	communal	land	management	

Mexico’s	current	system	of	land	management	developed	from	post‐revolution	
government	land	management	reform.			After	the	Mexican	Revolution	in	the	1910s,	Article	
27	of	the	1917	Constitution	declared	that	all	lands	and	waters	originally	belonged	to	the	
nation	and	that	the	nation	would	grant	private	property	rights	under	certain	conditions	
(Camara	de	Diputados,	2008).		Article	27	limited	the	size	of	private	properties,	parceled	
large	private	landholdings	and,	most	importantly,	granted	rights	to	rural	communities	and	
groups	of	families	to	own	land	to	meet	their	basic	needs	or	to	restore	customary	rights	held	
before	the	1800s	(Corbera,	et	al.,	2010).		The	share	of	communal	land	increased	up	until	the	
early	1980s.		In	the	early	1990s,	Article	27	was	reformed,	legalizing	the	formation	of	joint	
ventures	between	communal	landholders	and	private	capital.		This	allowed	community	land	
management	members	and	ejido	members	to	become	private	owners,	and	to	rent	and	sell	
land	to	third	parties.		Forests,	however,	could	not	be	subdivided	and	sold,	excluding	them	
from	privatization	(Corbera,	et	al.,	2010).		
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C.	Impact	of	community	forestry	on	deforestation	

A	majority	of	published	academic	studies	have	concluded	that	community	forestry	
does	not	influence	deforestation.		For	instance,	Perez‐Verdin	concluded	that	deforestation	is	
driven	by	resource‐specific	characteristics,	such	as	location	and	soil	productivity,	and	not	by	
ejidos’	attributes	(Perez‐Verdin,	et	al.,	2009).		However,	a	2012	study	reviewed	evidence	
related	to	community	forest	management	and	forest	cover,	finding	that	common	property	
and	community	forestry	are	significantly	related	to	reduced	rates	of	deforestation	and	
increased	rates	of	forest	recovery	of	coniferous	forests	in	Mexico	(Barsimantov	&	Kendall,	
2012).		Their	results	suggest	that	common	property	can	lead	to	greater	forest	conservation	
when	there	is	an	economically	valuable	asset	to	protect	(coniferous	forests)	and	when	there	
are	management	plans	in	place	to	formalize	the	extraction	process	and	revenue	
distribution.		Another	study	confirmed	that	community	land	management	practices	have	
resulted	in	the	maintenance	of	forested	landscape	in	some	areas	of	Mexico	(Bray,	et	al.,	
2004).	But	other	studies	concluded	that	community	management	has	mixed,	if	not	a	
negative	effect	on	forest	cover	(Vance	&	Iovanna,	2006)	(Alix‐Garcia,	2007).		A	study	in	
2010	demonstrated	that	the	characteristics	of	the	ejido,	rather	than	the	presence	or	absence	
an	ejidal	system,	determine	the	impact	on	deforestation:	population	density,	agricultural	
production	and	intensification	within	ejidos	affected	deforestation	rates	(Rueda,	2010).		
Vance	and	Geoghegan	(2002)	observed	increasing	deforestation	as	ejido	demographics	
change,	with	age	and	population	density	being	significantly	positively	related	to	
deforestation.		Geoghegan	et	al.	(2004)	supports	this	conclusion	and	further	posited	that	
deforestation	primarily	follows	agricultural	expansion	by	the	ejido	sector,	the	predominate	
form	of	land	tenure	in	the	southern	Yucatán.			

3.3.2.	Rural	Agricultural	Support	

The	role	of	government	agricultural	subsidies	on	deforestation	in	Mexico	is	mixed.		
In	1999,	a	study	was	done	contrasting	the	effects	which	the	Banco	de	Desarrollo	Rural	or	
Rural	Development	Bank	(BANRURAL)	credit	and	technical	assistance	have	on	
deforestation.		It	was	initially	thought	that	this	type	of	aid	would	increase	agricultural	
intensification,	thereby	relieving	pressure	on	nearby	forests	for	future	conversion.		The	
study	revealed	that	“government	subsidized	credit	failed	to	spur	a	process	of	agricultural	
intensification	that	could	have	substituted	for	cutting	down	forests”	(Deininger	&	Minten,	
1999).		The	same	authors	produced	another	study	a	few	years	later	that	determined	that	
BANRURAL	is,	in	fact,	associated	with	significantly	higher	levels	of	deforestation,	and	that	
these	credit	subsidies	“seem	to	have	encouraged	the	cutting	down	of	forests”	(Deininger	&	
Minten,	2002).		

A	second	study	that	same	year	confirmed	that	another	rural	subsidy	program,	
Programa	de	Apoyos	Directos	al	Campo	or	Famers	Direct	Support	Program	(PROCAMPO),	is	
also	associated	with	higher	levels	of	deforestation	(Vance	&	Geoghegan,	2002).		PROCAMPO	
is	a	Mexican	rural	support	program	created	to	alleviate	the	financial	impact	of	the	NAFTA	
on	agricultural	workers	in	1994	(Klepeis	&	Vance,	2003).		The	program	was	also	
implemented	with	the	intention	of	decreasing	environmental	degradation	through	the	
promotion	of	more	efficient	land	use,	using	funds	to	intensify	production	and	decrease	
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pressure	on	remaining	forests	(Klepeis	&	Vance,	2003).		The	resulting	increase	in	
deforestation	puts	the	program	at	odds	with	its	intent.	Vance	and	Geoghegan	(2002)	
suggest	poor	integration	of	landowners	into	markets	that	would	otherwise	encourage	land‐
intensive	chemical	inputs	as	a	reason	for	increased	agricultural	expansion	and,	
consequently,	decreased	forest	cover.		The	same	study	also	suggests	that	the	specific	terms	
of	the	program,	which	stipulate	the	area	and	location	supported	by	PROCAMPO	be	
maintained	under	continuous	production,	discourages	a	forest/fallow	agricultural	method	
that	maintains	the	fertility	of	soils	used.			Later	studies	of	PROCAMPO	reported	mixed	
results	(Geoghegan,	et	al.,	2004)	or	insignificant	relationships	(Chowdhury,	2006).		
Alternatively,	another	study	found	that	each	hectare	registered	in	PROCAMPO	actually	
decreased	the	hazard	of	deforestation	by	2.21%	(Vance	&	Iovanna,	2006).	

A	third	credit	program	that	may	affect	deforestation	is	the	Programa	Nacional	de	
Solidaridad	or	Mexico’s	National	Solidarity	Program	(PRONASOL).		The	most	recent	study	
on	PRONASOL	and	forest	cover	change	determined	that	the	program’s	subsidies	in	northern	
municipalities	are	causing	a	considerable	increase	in	forest	loss,	while	subsidies	in	the	
south	and	east	are	not	(Jaimes,	2010).		The	effect	of	Mexico’s	rural	agricultural	support	
programs	on	deforestation	requires	further	study	of	the	types	of	rural	agricultural	subsidies	
and	where	and	to	what	extent	they	are	related	to	deforestation.		

3.3.3.	Payments	for	Ecosystems	Services	

Mexico	has	already	designed	and	implemented	a	payments	for	ecosystems	services	
(PES)	program,	a	payments	for	hydrological	services	program	(PSAH),	which	is	designed	to	
incentivize	the	increased	production	of	hydrological	services	through	forest	conservation	
(Alix‐Garcia,	et	al.,	2012).		Through	PSAH,	the	Mexican	federal	government	pays	
participating	forest	owners	for	the	benefits	of	watershed	protection	and	aquifer	recharge	in	
areas	where	commercial	forestry	is	not	currently	competitive	(Munoz‐Pina,	2008).	Most	
studies	have	found	that	this	application	of	PES	in	Mexico	reduces	deforestation	to	some	
extent.		A	number	of	studies	on	protected	forests	reveal	that	a	combination	of	legal	forest	
protection	and	financial	incentives	has	helped	reduce	deforestation	in	Mexico	(Honey‐
Roses,	et	al.,	2011).		In	2011,	a	study	found	that	a	combination	of	legal	protection	and	PES	
has	helped	protect	forest	habitat	for	the	monarch	butterfly	in	Mexico.		The	study	estimated	
that	without	the	joint	conservation	initiative,	losses	of	forest	would	have	been	3%	and	11%	
higher	in	areas	with	just	a	logging	ban	or	with	dense	canopy,	respectively	(Honey‐Roses,	et	
al.,	2011).		In	2012,	in	another	study	analyzing	PSAH,	results	suggested	PES	in	Mexico	
reduced	deforestation	that	would	have	occurred	under	BAU	scenarios,	but	result	results	
were	uneven.		It	was	further	revealed	that	the	program	seemed	to	be	more	effective	in	
generating	avoided	deforestation	where	poverty	is	lower	and	in	the	southern	and	north‐
eastern	states	of	Mexico	(Alix‐Garcia,	et	al.,	2012).		A	2008	study	revealed	that	while	PSAH	
is	associated	with	reduced	deforestation,	the	program’s	payments	have	been	in	areas	with	
low	deforestation	risk,	suggesting	that	the	selection	criteria	be	modified	to	better	target	
higher	risk	areas	(Munoz‐Pina,	2008).	There	is	room	for	further	study	on	socio‐economics	
of	the	area	under	PSAH	as	well	as	other	potential	PES	program	designs.	
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3.4.Database	regression	results	 	 	

3.4.1.	A	Meta‐analysis	of	Drivers	of	Deforestation	in	Mexico:	Methods	

Recent	technological	and	methodological	advancements	have	encouraged	the	
proliferation	of	econometric	studies	of	deforestation	grounded	in	remotely	sensed	evidence	
of	forest	cover	loss.		We	have	compiled	a	comprehensive	database	of	117	econometric	
studies	of	deforestation,	including	23	studies	in	Mexico,	published	between	1996	and	2014.	
To	be	included	in	the	database,	studies	had	to	meet	five	criteria:	(1)	the	dependent	variable	
must	measure	forest	cover	or	forest	cover	change;	(2)	the	dependent	variable	must	be	
remotely	sensed;	(3)	the	dependent	variable	must	have	resulted,	in	part,	from	
anthropogenic	causes;	(4)	the	article	must	include	a	table	of	multivariate	regression	
outputs;	and,	(5)	the	article	must	have	been	published	in	a	peer‐reviewed	journal.		The	
database	is	meant	to	be	a	single	source	for	all	econometric	studies	of	deforestation,	allowing	
easy	access	and	analysis	of	deforestation.		This	database	was	created	to	provide	an	
overview	of	current	scientific	understanding	of	forest	cover	loss,	to	improve	policy	
implementation	aimed	at	deforestation	mitigation,	and	to	identify	gaps	in	scientific	
evidence	requiring	further	research.		

From	the	individual	studies	we	categorized	driver	variables	(n=1159)	into	“meta‐
variables”	such	as	elevation,	proximity	to	road,	or	agricultural	activity,	of	which	33	were	
included	in	the	studies	of	deforestation	in	Mexico	(Table	3.4.1).		A	single	meta‐variable	is	
the	sum	of	all	regression	results	from	indicators	measuring	the	same	phenomenon.	For	
instance,	the	meta‐variable	Elevation	is	comprised	of	variables	labelled	“Elevation,”	“Mean	
Elevation,”	“Altitude”	etc.		While	Table	3.4.1	presents	a	comprehensive	list	of	driver	
variables	collected	in	the	database	from	studies	in	Mexico,	some	variables	have	yet	to	be	
analyzed	due	to	the	complexity	of	interpreting	the	variable	(e.g.	Soil	Type).	

For	each	meta‐variable,	within	each	study,		we	summed	the	number	of	regression	
outputs	or	matching	outputs	that	found	the	association	between	that	meta‐variable	and	
deforestation	to	be	negative	and	significant,	not	significant,	or	positive	and	significant.	
These	results	were	then	organized	into	a	database	upon	which	we	based	our	analysis.	We	
termed	the	meta‐variable	to	be	consistently	associated	with	lower	(or	higher)	deforestation	
if	the	ratio	of	positive	and	significant	outputs	to	negative	and	significant	outputs	was	
statistically	significantly	less	than	(or	greater	than)	1:1	in	a	two‐tailed	t‐test	at	the	95%	
confidence	level.	We	termed	the	meta‐variable	to	be	not	consistently	associated	with	lower	
or	higher	deforestation	if	the	ratio	of	positive	and	significant	outputs	to	negative	and	
significant	outputs	was	not	statistically	significantly	distinguishable	from	1:1.		
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Table	3.4.1	Drivers	of	deforestation	in	Mexico,	by	driver	category		

Biophysical	
Built	
Infrastructure	

Agriculture,	Pasture,	
and	Working	Forests	

Demographics,	
Poverty,	and	
Income	

Land	
Management	

Elevation	
(n=15)	
Slope	(n=16)	
Wetness	(n=8)	
Forest	Area	
(n=3)	
Soil	Suitability	
(n=6)	
Proximity	to	
Clearing	(n=9)	
Proximity	to	
Water	(n=3)	

Proximity	to	
Road	(n=13)	
Proximity	to	
Urban	Area	
(n=12)	
	

Agricultural	Activity	
(n=9)	
Proximity	to	Agriculture	
(n=8)	
Agricultural	Prices	(n=4)	
Economic	Activity	(n=2)	
Livestock	Activity	(n=2)	
Timber	Activity	(n=1)	
Timber	Price	(n=1)	
Use	of	Fuelwood	(n=1)	

Population	(n=10)	
Poverty	(n=14)	
Education	(n=8)	
Indigenous	
Population	(n=8)	
Age	(n=1)	
Presence	of	
Females:	(n=1)	
Property	Size	(n=7)	
Rural	Income	
Support	(n=8)	
Off‐Farm	
Employment	(n=3)	
	

Tenure	Security	
(n=6)	
Protected	Areas	
(n=6)	
Plot	Size	(n=4)	
Land	Use	(n=4)	
Logging	
Activities	(n=3)	
PES	(n=2)	
Community	
Forestry/Ejidos	
(n=15)	
	

Note:	“n	”	indicates	the	number	of	studies	that	have	analyzed	the	meta‐variable	in	relation	to	
deforestation	in	Mexico,	out	of	a	total	23	studies.		We	categorized	every	regression	result	reported	in	
the	included	studies	into	one	of	three	categories.		Regression	results	showing	a	negative	and	
significant	relationship	between	a	driver	variable	and	deforestation	were	coded	as	“‐“;	regression	
results	showing	a	positive	and	significant	relationship	between	a	driver	variable	and	deforestation	
were	coded	as	“+“;	regression	results	showing	no	significant	relationship	between	a	driver	variable	
and	deforestation	were	coded	as	“n.s.“		

3.4.2.	Results	for	Mexico	and	SE	sub‐regions		

The	results	for	how	each	meta‐variable	is	associated	with	deforestation	across	
statistical	studies	of	deforestation,	are	shown	in	Figures	3.4.1	and	3.4.2	at	the	end	of	this	
section	and	Figure	A‐1	in	the	Appendix.		Figure	3.4.1	presents	the	database	results	for	all	
studies	focused	on	Mexico.		In	Mexico,	variables	most	associated	with	decreases	in	
deforestation,	include	protected	area,	property	size,	elevation,	community	forestry,	and	
payments	for	ecosystems	services	(PES).		There	are	some	predictable	results:	that	protected	
areas	and	PES	are	associated	with	decreased	deforestation	is	not	surprising.		Forests	in	
areas	of	higher	elevation	may	well	be	more	remote	and	have	more	limited	access.	That	
increased	property	size	is	associated	with	lower	deforestation	could	reflect	that	bigger	
properties	imply	fewer	land	users,	and	consequently	reduced	competition	for	forest	
resources.		

Variables	associated	with	increased	deforestation	include	proximity	to	agriculture,	
population,	agricultural	activity	and	soil	suitability.		Again,	these	relationships	are	probably	
not	surprising:	deforestation	in	Mexico	occurs	where	economic	returns	to	agriculture	are	
higher	(as	proxied	by	proximity	to	cleared	land	and	agricultural	activity)	and	where	
biophysical	conditions	are	favourable	(as	indicated	by	soil	suitability).		Population	is	also	
generally	associated	with	increased	deforestation,	as	it	suggests	increased	competition	for	
forest	resources.		
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Figure	3.4.1	Drivers	of	Deforestation	in	Mexico:	Results	of	Meta‐Analysis		

	

Note:	This	graph	presents	regression	results	from	studies	on	deforestation	in	Mexico.	Results	are	
ordered	by	ratio	of	negative	to	positive	association	with	deforestation.	

Most	variables	that	are	not	consistently	significant	are	perhaps	also	not	surprising.	
As	expected,	results	for	rural	income	support	are	mixed.		Surprisingly,	however,	community	
forestry	is	more	consistently	associated	with	less	deforestation,	whereas	the	effect	of	ejidos	
on	deforestation	is	mixed.		We	separated	variables	referring	specifically	to	ejidos	and	those	
referring	to	the	broader	term	of	community	forestry.		This	discrepancy	suggests	more	study	
is	needed	of	the	differences	between	various	community	land	tenures	in	Mexico	and	their	
respective	relationships	with	deforestation	rates.		Also	surprising,	variables	indicating	
indigenous	territory	are	not	significantly	related	to	deforestation,	either	positive	or	
negative,	in	Mexico.		In	our	global	study	we	found	indigenous	land	tenure	is	commonly	
associated	with	decreased	deforestation	(Ferretti‐Gallon	&	Busch,	2014).		
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Figure	A‐1	in	the	Appendix	compares	results	on	the	relationships	between	the	
variables	and	deforestation	at	the	global	level	and	in	Mexico.		Due	to	space	limitations,	the	
figure	only	includes	the	15	top	variables	that	have	been	most	included	in	regression	
analyses	at	the	Mexico	level.		Still,	the	figure	suggests	that	variables	affecting	deforestation	
are	generally	the	same	in	Mexico	as	at	the	global	level.		Protected	area	extent	and	elevation	
are	both	associated	with	decreased	rates	of	deforestation	and	are	robust	at	both	levels	of	
study.		On	the	other	hand,	globally,	communal	forest	management	is	associated	with	
increased	deforestation,	while	at	the	Mexico	level,	the	community	forestry	(including	both	
ejidos	and	other	variables	related	to	communal	land	ownership)	is	associated	with	lower	
deforestation.		Similarly,	rural	income	support	is	associated	with	increases	in	deforestation	
at	the	global	level,	but	the	results	are	more	mixed	at	the	Mexico	level.		Finally,	at	the	global	
level,	poverty	is	associated	with	lower	deforestation,	while	in	Mexico	increased	poverty	
appears	to	be	associated	with	higher	deforestation.			

Figure	3.4.2	compares	results	disaggregated	from	the	Mexico	level	to	the	Yucatán	
Peninsula	(including	the	Yucatán,	Quintana	Roo,	and	Campeche,	but	excluding	Tabasco).			
Due	to	space	limitations,	the	graph	again	only	includes	the	15	top	variables	that	have	been	
most	regressed	at	the	Yucatán	level.		Variables	associated	with	less	deforestation	(property	
size	and	elevation)	and	variables	associated	with	more	deforestation	(population,	proximity	
to	agriculture	and	population)	are	robust	at	this	level	of	disaggregation.	Notably,	poverty	
again	has	an	inconsistent	association	with	deforestation.			At	the	national	level,	poverty	
appears	linked	to	increases	in	deforestation,	while	in	the	Yucatán	Peninsula	poverty	is	
associated	with	decreased	deforestation.		A	similar	inconsistency	is	noted	with	indigenous	
populations.	While	at	the	national	level	Indigenous	territory	is	associated	with	decreased	
deforestation,	the	same	variable	is	associated	with	increased	deforestation	at	the	Yucatan	
Peninsula	level.	These	inconsistencies	perhaps	support	the	widely	held	view	that	Mexico’s	
landscape	and	the	related	drivers	of	deforestation	vary	greatly	by	region.		

It	is	important	to	emphasize	the	distinction	between	correlation,	or	association,	and	
causation.				To	provide	one	well‐known	example,	rates	of	deforestation	might	be	lower	
within	protected	areas	because	protected	areas	are	preventing	deforestation	from	
occurring	(causality).		This	relationship	might	also	be	because	areas	that	have	low	rates	of	
deforestation	for	other	reasons	such	as	geographic	remoteness	have	greater	intact	
biodiversity,	which	led	to	protected	areas	being	designated	in	those	locations	(an	example	
of	reverse	causality).		Disentangling	these	effects	requires	specialized	techniques	such	as	
matching	methods,	which	have	been	performed	in	Mexico	for	protected	areas	and	payments	
for	ecosystem	services	(Honey‐Roses	2011),	but	not	yet	for	ejidos,	suggesting	an	avenue	for	
further	analysis.	
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Figure	3.4.2.	Drivers	of	Deforestation	in	the	Yucatán	Peninsula	as	Compared	to	the	
Rest	of	Mexico:	Results	of	Meta‐Analysis			

	

Note:	This	graph	displays	regression	results	from	studies	focused	on	the	Yucatán	Peninsula	
(including	Campeche,	Quintana	Roo	and	Yucatán)	as	compared	to	results	from	the	studies	focused	on	
the	rest	of	Mexico.		For	each	meta‐variable,	two	sets	of	results	are	reported:	the	first	set	represents	
results	for	the	Yucatán	Peninsula	in	lighter	colors,	while	the	second	set	represents	results	for	Mexico	
in	darker	colors.		Results	per	meta‐variable	are	ordered	by	ratio	of	average	negative	to	average	
positive	association	with	deforestation.	
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4. Analysis	of	deforestation	at	national	level	/	OSIRIS	

4.1.	Introduction	

We	conducted	an	econometric	analysis	of	deforestation	in	Mexico	at	the	national	
scale	in	order	to	calibrate	a	simulation	model	to	explore	the	impact	of	alternative	economic	
and	policy	scenarios.		In	particular,	we	analyzed	detailed	spatially‐explicit	data	on	annual	
forest	cover	losses	across	all	of	Mexico	over	2000‐2012.		Our	econometric	analysis	is	based	
on	the	idea	that	landowners4	will	choose,	from	a	set	of	potential	land	uses,	the	option	that	
brings	the	highest	expected	discounted	returns				The	goal	is	to	explicitly	capture	the	
influence	of	the	economic	net	benefits	from	converting	land	from	forest	to	non‐forest	uses	
for	the	purposes	of	calibrating	a	policy‐simulation	model	that	can,	for	example,	analyze	the	
impact	of	different	REDD+	policy	structures,	or	other	potential	payments	for	ecosystem	
services.				

The	national	model	serves	to	1)	measure	the	impact	of	different	historical	drivers	of	
land‐use	change	2)	generate	a	spatial	distribution	of	probability	of	future	deforestation	
under	alternative	policy	and	market	scenarios,	3)	help	to	identify	cost‐effective	mitigation	
opportunities	and	estimate	the	opportunity	costs	of	abating	carbon	emissions	from	
deforestation,	and	4)	provide	a	basis	for	examining	policy	design	elements	so	as	to	create	
economic	incentives	for	the	implementation	of	REDD+	in	Mexico.		In	particular,	results	from	
an	econometric	analysis	serve	to	calibrate	the	simulation	and	estimation	on	the	distribution	
and	total	rate	of	deforestation	across	Mexico	under	a	set	of	economic	and	policy	scenarios	
that	alter	the	economic	calculus	for	land	conversion,	looking	retrospectively	over	2000‐12	
as	well	as	out	into	the	future	over	the	next	10	years.		The	national	model	predicts	site‐level	
deforestation	based	on	fitted	values	from	the	econometric	model,	estimated	using	observed	
deforestation.		In	particular,	we	model	deforestation	in	relation	to	variation	in	estimated	
gross	agricultural	revenues	and	proxies	for	fixed	and	variable	costs	using	observable	site	
characteristics.		The	results	from	the	simulation	provide	regional	deforestation	rates	as	an	
input	to	the	LCM	modeling	of	the	seven	AATRs.			

4.2.	Empirical	Model	

4.2.1.Econometric	Specification	

Several	challenges	arise	in	developing	an	empirically	tractable	specification	to	
identify	the	role	of	economic	returns	in	driving	deforestation	in	Mexico.	Our	econometric	
approach	focuses	on	addressing	two	main	sets	of	issues.		The	first	set	of	issues	relates	to	the	
structure	of	our	dependent	variable,	which	is	an	aggregation	of	the	native	data	at	the	30m	
cell	resolution.		The	aggregation	introduces	the	challenge	of	modeling	a	range	of	potential	
changes	in	forest	area	within	a	larger	grid	cell,	where	the	potential	magnitude	of	changes	is	

																																																													
4	In	Mexico,	approximately	70%	of	forestland	has	a	communal	form	of	ownership	(Corbera,	et	al.,	
2010).		Therefore,	for	our	analysis	both	private	individuals	and	communities	are	the	relevant	land	
owners	or	managers.		
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linked	to	the	amount	of	forest	area	within	each	grid.		The	second	set	of	issues	relates	to	the	
fact	that	we	only	have	imperfect	observations	of	economic	returns	for	our	units	of	
observation,	as	mentioned	above.			A	full	discussion	of	our	national	model,	econometric	
approach,	data,	and	estimation	results	are	provided	in	Appendix	I.	

4.2.1.1.	Relationship	of	deforestation	to	available	forest	area	within	a	900m	grid	cell	

Our	underlying	data	source	for	deforestation,	our	dependent	variable	interest,	
provides	binary	information	on	the	presence	or	non‐presence	of	forests	at	the	30m	cell	level	
for	each	year	between	2000	and	2012,	providing	a	total	of	11	observed	annual	changes	
(Hansen,	et	al.,	2013).		While	we	conduct	the	local	scale	analyses	at	this	most	detailed	level	
of	resolution,	an	analysis	at	this	level	of	detail	is	not	computationally	tractable	for	all	of	
Mexico	as	this	would	involve	over	1	billion	points	per	year	or	almost	13	billion	data	points	
across	all	11	observed	yearly	change	periods.		To	make	the	national	analysis	
computationally	feasible,	we	aggregate	our	30m	x	30m	cells	into	larger	900m	x	900m	cells,	
each	of	which	contain	900	potentially	forested	smaller	cells	at	the	30m	resolution.		This	
procedure	reduces	the	size	of	the	dataset	to	about	1.39	million	observations	annually,	after	
eliminating	any	900m	grid	cells	not	containing	any	of	the	smaller	30m	forested	cells	in	the	
year	2000.5		At	this	scale,	our	preferred	specification	still	took	about	24	hours	to	run	on	our	
most	powerful	computer	with	24	GB	of	RAM.	

Our	constructed	dependent	variable	is	thus	the	annual	change	in	forest	cover	from	
2000	through	2012	on	each	900m	cell	containing	forests,	spanning	all	the	continental	land	
area	of	Mexico	(i.e.,	islands	were	excluded).		Our	units	of	analysis	thus	measure	900m	x	
900m	or	810,000	m2	(equivalent	to	81	ha	or	0.81	km2).		We	restrict	attention	to	900m	cells	
that	contain	at	least	one	forested	30m	cell.		The	change	within	each	of	these	units	is	
measured	in	terms	of	the	number	of	constituent	30m	cells	that	are	forested	at	the	start	of	
the	year	but	then	change	from	forest	to	non‐forest	cover	over	the	year.			While	we	assign	the	
same	explanatory	variables	to	all	the	smaller	30m	cells	within	each	of	our	900m	units,	we	
thus	model	changes	in	30m	cell	increments.		These	changes	might	represent	decisions	by	
one	or	more	landowners	within	each	900m	cell.		We	do	not	have	comparable	annual	data	
for	possible	forest	gains	on	these	cells,	so	only	consider	forest	losses	in	our	model.6		Thus,	if	
a	900m	cell	loses	all	of	its	forest	cover	in	a	particular	year,	that	cell	does	not	enter	into	our	
econometric	analysis	in	any	subsequent	years.			

																																																													
5	Given	available	data,	we	only	examine	losses	of	forest	cover	in	areas	that	were	forested	in	2000.		
Thus	our	deforestation	analysis	cannot	consider	deforestation	on	areas	that	were	not	forested	in	
2000	but	could	have	subsequently	gained	and	lost	forest	between	2000	and	2012.		This	is	
appropriate	given	our	focus	on	the	REDD+	policy	and	the	greater	carbon	and	biodiversity	values	
associated	with	more	mature	forests,	rather	than	recently	regenerating	forests.	

6	While	(Hansen,	et	al.,	2013)	do	provide	data	on	cumulative	forest	gains	from	2000	to	2012,	an	
analysis	of	these	data	would	have	required	a	separate	analysis	and	was	beyond	the	scope	of	the	
current	study.		
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The	structure	of	our	dependent	variable	raises	several	issues.		The	first	issue	is	that	
our	data	has	a	“count”	structure,	as	forest	area	and	changes	in	area	are	measured	in	discrete	
units,	ranging	from	0	up	to	900,	the	maximum	number	of	30m	cells	within	a	larger	900m	
grid	cell.			Given	this	count	structure,	our	econometric	estimation	method	is	a	Poisson	quasi‐
maximum	likelihood	estimator	(QMLE)	which	is	consistent	with	estimating	a	count	variable	
generated	by	independent,	binary	decisions	at	the	30m	cell	resolution	(Wooldridge,	2002).			
For	robustness,	we	also	conduct	the	analysis	using	a	negative	binomial	model,	which	
modifies	the	Poisson	regression	model	with	a	multiplicative	random	effect	to	represent	
unobserved	heterogeneity.		This	is	a	way	to	address	potential	“over‐dispersion,”	which	is	a	
common	situation	in	analyses	of	count	data,	where	the	observed	variance	of	the	dependent	
variable	exceeds	the	variance	of	the	theoretical	model,	indicating	the	model	is	not	a	good	
representation	of	the	underlying	phenomenon. 

There	is	another	important	issue	to	consider	when	estimating	the	magnitude	of	
changes	in	forest	area	within	a	relatively	small	fixed	geographic	boundary:		the	amount	of	
deforestation	over	a	given	period	is	closely	linked	to	the	amount	of	forest	available	to	be	
deforested	within	each	cell	at	the	beginning	of	the	period.		One	issue	is	that	there	is	a	simple	
physical	constraint.		The	amount	of	forest	that	can	be	lost	in	any	given	year	is	limited	by	the	
availability	of	forest	within	the	grid	cell.		Given	our	dataset	without	forest	gains,	more	forest	
cannot	be	lost	over	a	year	than	exists	at	the	start	of	the	year.		Rather,	when	deforestation	
progresses	over	time,	the	available	forest	declines	and,	in	some	cases,	is	completely	
exhausted	within	a	900m	grid	cell.	

	Although	the	starting	forest	cover	sets	a	physical	limit	on	the	potential	
deforestation	within	each	900m	cell,	there	are	also	economic	factors	at	work.	The	difficulty	
of	accessing	and	deforesting	a	30m	forest	cell	is	likely	to	be	greater	the	farther	away	that	
cell	is	from	non‐forest	areas,	including	previously	forested	land	that	has	already	been	
cleared,	given	greater	costs	in	terms	of	travel	time	and	effort	to	transport	people	and	
machinery	through	forests	as	compared	to	more	open	areas.	As	a	result,	as	a	cell	is	
progressively	deforested,	more	and	more	of	the	cell’s	forested	areas	become	accessible	and	
easier	(lower	cost)	to	cut	down.		Thus,	generally	speaking,	the	costs	of	converting	a	hectare	
of	forest	within	a	900m	cell	are	likely	to	be	inversely	related	to	the	total	amount	of	forest	
area	in	the	cell.		This	ignores,	for	the	time	being,	the	disposition	of	the	surrounding	cells	as	
well	as	differences	in	the	spatial	configuration	of	the	forest	area	at	the	30m	resolution	
within	the	900m	cell.	

Another	economic	consideration	is	the	fact	that	forest	loss	within	a	900m	grid	cell	is	
not	likely	to	be	distributed	in	a	completely	random	manner.		People	should	have	an	
incentive	to	preferentially	deforest	those	areas	yielding	a	higher	net	return,	either	because	
of	higher	net	revenues	or	because	of	lower	costs	of	conversion.		Thus,	one	would	expect	
people	to	tend	to	first	cut	those	areas	that	are	most	easily	accessible	or	best	suited	for	
agriculture.		As	a	result,	the	fact	that	while	a	certain	share	of	the	forest	has	been	cleared,	
another	share	(one	minus	the	deforested	share)	still	remains	in	forest	cover	may	convey	
certain	information	about	the	relative	profitability	of	converting	those	remaining	forests.		
For	example,	if	five	percent	of	the	original	forest	extent	(e.g.	45	out	of	900	possible	30m	
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cells)	remains	standing,	while	the	other	ninety‐five	percent	has	been	cut	down,	this	may	
indicate	that	the	last	five	percent	is	relatively	difficult	or	otherwise	unprofitable	to	convert.		
This	may	also	provide	some	information	regarding	the	likely	degradation	and	potential	
timber	value	of	the	remaining	forest	cover.		

We	take	these	dynamics	into	account	in	our	model	by	directly	controlling	for	the	
starting	forest	area	in	each	900m	grid	cell.		In	particular,	we	stratify	the	sample	into	20	
starting	forest	area	categories,	with	the	bins	chosen	to	contain	roughly	similar	numbers	of	
900m	grid	cells	(given	that	these	observations	are	our	unit	of	analysis).	This	includes	a	bin	
for	cells	with	100%	forest	cover	(the	maximum	900	count	of	forested	30m	cells).	We	then	
include	dummy	variables	for	each	of	these	starting	forest	area	categories	as	well	as	
additional	multiplicative	terms	that	capture	the	interactions	between	this	initial	set	of	
dummy	variable	and	each	of	our	key	explanatory	variables	in	the	regression.		This	allows	us	
to	estimate	how	each	of	these	different	variables	affect	the	likelihood	and	scale	of	
deforestation	within	a	grid	cell,	depending	on	the	starting	area	of	the	forest.		In	this	way,	we	
can	capture	both	the	physical	constraints	imposed	by	the	different	available	quantities	of	
forest	as	well	as	the	different	economic	dynamics	of	forest	clearing	at	different	stages	of	
deforestation	within	a	900m	cell.		

Until	now,	the	discussion	has	focused	on	how	deforestation	within	a	900m	cell	
depends	on	the	extent	of	forest	clearance	within	the	grid	cell	itself.		The	surrounding	area	
outside	the	cell	should	matter	both	in	terms	of	making	the	cell	more	or	less	accessible	and	
thus	increasing	or	decreasing	the	costs	of	conversion,	as	discussed	earlier.		We	control	for	
the	surrounding	landscape	by	calculating	a	measure	of	the	average	distance	of	a	grid	cell	to	
all	of	the	non‐forest	30m	cells	in	the	surrounding	area,	within	a	2.5km	radius.		We	use	a	
“kernel	density”	to	interpolate	the	influence	of	the	non‐forest	area	over	space,	assuming	
decreasing	“gravity”	of	these	areas	as	distance	increases,	up	to	the	chosen	2.5km	radius,	at	
which	point	the	influence	of	non‐forest	area	is	considered	zero.			

4.2.1.2.	Observed	and	unobserved	components	of	net	returns	from	land	conversion	

The	principal	challenge	in	developing	a	model	for	empirical	estimation	is	that	we	
only	have	partial	information	on	the	potential	net	returns	that	landowners	could	obtain	
from	the	most	profitable	non‐forest	land	use.		We	proxy	for	some	differences	in	the	costs	of	
conversion	and	heterogeneous	quality	of	agricultural	land	within	a	grid	cell	by	accounting	
for	the	starting	forest	area	on	its	own	as	well	as	in	interaction	with	our	key	explanatory	
variables.		Our	main	explanatory	variable	of	interest	is	an	estimate	of	the	potential	
economic	returns	per	hectare	from	crop	production,	which	we	consider	as	a	proxy	for	the	
potential	returns	from	converting	land.		We	do	not	have	data	on	the	costs	of	producing	
crops	in	terms	of	labor,	fertilizer,	chemicals,	and	any	other	inputs	nor	do	we	have	data	on	
the	costs	of	transporting	any	products	to	the	market.	We	also	do	not	have	data	on	the	(one‐
time)	costs	of	conversion	(as	well	as	any	potential	one‐time	benefits	of	conversion	such	
sales	of	timber).		Both	fixed	and	variable	costs	as	well	as	revenues	will	determine	the	
economic	rationale	for	converting	forests.	
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To	account	for	these	different	costs,	our	approach	is	to	introduce	additional	control	
variables	at	the	level	of	the	900m	cell	that	we	expect	will	be	correlated	with	production	and	
conversion	costs.		All	time‐varying	explanatory	variables	are	lagged	one	year	so	as	not	to	be	
contemporaneous	with	the	dependent	variable.		The	starting	forest	area	categories,	
described	above,	provide	one	proxy	for	potential	conversion	costs	as	well	as	potential	
differences	in	agricultural	returns	with	in	the	grid	cell.			As	with	the	starting	forest	
categories,	each	of	the	other	control	variables	in	our	model	is	included	independently	and	in	
interaction	with	our	measure	of	potential	revenues	for	each	grid	cell.		When	these	variables	
are	included	independently,	the	estimated	parameters	on	these	additional	variables	will	
adjust	the	intercept	in	the	model,	capturing	potential	one‐time	conversion	or	other	fixed	
costs	(or	benefits).		When	the	variables	are	included	in	interactions	with	the	agricultural	
revenues,	the	estimated	econometric	parameters	will	scale	the	response	to	the	estimated	
economic	returns	based	on	the	proxies	for	additional	cost	factors.		

Our	principal	variables	are	listed	in	Table	4.2.1.		While	these	variables	help	to	adjust	
the	fixed	costs	and	to	scale	the	effects	of	the	agricultural	returns,	there	may	still	be	
significant	unobserved	factors	affecting	economic	profitability	of	land	conversion.		As	a	
result,	given	the	specific	interest	of	the	MREDD	program	in	the	Yucatán	and	Southern	
regions,	we	also	introduced	regional	dummy	variables,	singly	and	multiplicatively	(i.e.	in	
interaction)	with	agricultural	returns,	to	account	for	other	factors,	such	as	government	
policies,	that	may	affect	agricultural	profitability	at	the	broad	regional	level.				

Table	4.2.1.	Principal	explanatory	variables	used	in	national	regressions	(900m	cell)	

Variable	 Units	 Variation	over	Space	
Variation	over	

Time	

Potential	Crop	Revenue	 MXN$/ha Yes Yes	

Starting	forest	area	category	 0/1 Yes Yes	

Non‐forest	influence	 km2 Yes Yes	

Urban	influence	 km2 Yes No	

Protected	area	extent	 m2 Yes Yes	

Ejido	area	extent	 m2 Yes No	

Comunidades		area	extent	 m2 Yes No	

Slope	 % Yes No	

Spatial	trend	surface	 Lat/long Yes No	

We	compiled	detailed	information	on	PROCAMPO	payments.			However,	we	did	not	
directly	include	PROCAMPO	payments	in	our	econometric	model	because	receipt	of	
payments	from	PROCAMPO	(and	other	government	programs)	is	not	random.		These	
payments	are	a	fixed	amount	per	hectare	based	on	the	size	of	farms,	and	payments	are	
concentrated	in	ejidos	and	agrarian	community	areas.		As	a	result,	the	constant	terms	in	our	
model	and	the	variable	on	ejidos	and	agrarian	community	lands	within	a	grid	cells	may	
already	capture	the	role	of	the	government	payments.		Including	these	explicitly	is	likely	to	
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capture	characteristics	of	the	landowners	(notably	farm	size)	rather	than	the	impact	of	the	
payments	themselves.			Econometrically	identifying	the	role	of	PROCAMPO	and	other	
government	payments	would	require	a	distinct	empirical	strategy,	exploiting	changes	in	the	
program	criteria,	and	was	beyond	the	scope	of	this	study.		Nevertheless,	we	are	able	to	
simulate	the	potential	role	of	eliminating	agricultural	subsidies	from	PROCAMPO,	building	
on	the	idea	that	the	role	of	these	programs	is	already	captured	in	our	estimated	parameters.		

4.3.	Historical	Simulations	

4.3.1.	Simulation	Scenario	

We	use	our	estimated	model	parameters	to	conduct	a	series	of	simulations	to	
explore	alternative	scenarios,	looking	back	retrospectively	over	the	2000‐2012	period.			In	
the	next	Section	4.4,	we	consider	forward	looking	scenarios	over	2014‐2024.		We	begin	
with	analyses	that	are	within	the	sample	period	to	be	as	consistent	as	possible	with	the	data	
used	to	estimate	the	model.			The	goal	of	these	scenarios	is	to	understand	the	relative	effect	
of	different	variables,	as	well	as	to	explore	some	alternative	policy	scenarios.			We	then	
conduct	a	forward‐looking	simulation	to	predict	deforestation	in	the	future	in	the	next	
section	(Section	3.6).			We	conduct	six	simulations	over	our	historical	period	of	analysis,	as	
summarized	in	table	4.3.1.	below.			

Table	4.3.1.	Simulation	scenarios	over	historical	period	in	data	set,	2000‐2012	

Scenario	name	 Description	

1)	Factual	simulation		 All	variables	held	at	historical	levels	from	2000	to	2012.	

2)	99%	Potential	Agricultural	
Returns	on	Forest	Lands	

Potential	agricultural	revenues from	converting	forest	lands
reduced	by	1%	relative	to	historical	levels	in	all	years.	

3)	101%	Potential	Agricultural	
Returns	on	Forest	Lands	

Potential	agricultural	revenues	from	converting	forest	lands
increased	by	1%	relative	to	historical	levels	in	all	years.	

4)	90%	Potential	Agricultural	
Returns	on	Forest	Lands	

Potnatial	agricultural	revenues	from	converting	forest	lands
reduced	by	10%	relative	to	historical	levels	in	all	years.	

5)	110%	Potential	Agricultural	
Returns	on	Forest	Lands	

Potential	agricultural	revenues from	converting	forest	lands
increased	by	10%	relative	to	historical	levels	in	all	years.	

6)	No	PROCAMPO	payments	on	
forested	lands	in	ejidos	or	agrarian	
communities.			

Potential	agricultural	returns	from	converting	forest	lands
within	agrarian	community	and	ejidos	reduced	by	value	of	
PROCAMPO	payments	per	program	hectare	in	municipality	

*	The	simulations	regarding	changes	to	agricultural	returns	are	aimed	at	revealing	the	estimated	
sensitivity	of	deforestation	to	changes	in	the	net	benefits	from	converting	forests	to	agricultural	uses.		

First,	we	establish	a	baseline	for	comparing	our	simulation	results	by	conducting	a	
“factual”	simulation	using	the	actual	historical	values	of	all	the	variables	used	in	the	
estimation.		The	next	four	simulations	examine	the	impact	of	our	primary	variable	of	
interest,	the	estimated	agricultural	returns.		This	variable	is	our	best	guess	of	the	potential	
net	benefits	of	converting	forest	lands	to	a	non‐forest	use.		The	estimated	sensitivity	to	this	
variable	will	be	used	in	our	modeling	to	examine	the	possible	impacts	of	alternative	policies	
that	could	change	the	net	benefits	from	converting	forested	land.		Such	changes	in	the	net	
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benefits	could	come	through	changes	in	the	profitability	of	the	non‐forest	use	(e.g.	because	
of	changes	in	government	agricultural	subsidies	on	converted	forest	lands),	or	through	
changes	in	the	relative	value	of	maintaining	land	in	forest	cover	(e.g.	because	of	different	
otential	incentives	for	forest	protection).			

Scenarios	2	and	3	explore	the	sensitivity	of	deforestation	to	our	potential	
agricultural	returns	variable	by,	respectively,	decreasing	and	increasing	estimated	potential	
agricultural	returns	by	1%	relative	to	their	factual	values.			This	provides	an	estimated	
elasticity	for	changes	in	deforestation	with	respect	to	changing	economic	incentives,	as	
captured	by	our	model.		These	simulations	are	generally	more	indicative	of	the	model	
findings	for	smaller	changes	in	the	variables	that	are	within	the	range	of	the	data	used	in	the	
analysis.		Nevertheless,	in	order	to	see	how	these	results	might	scale	with	larger	changes	in	
returns,	scenarios	3	and	4	repeat	the	exercise	with	a	somewhat	larger	change	in	returns,	
decreasing	and	increasing	estimated	agricultural	returns	by	10%	relative	to	their	factual	
values.				

The	fourth	scenario	uses	the	estimated	parameters	on	agricultural	returns	to	
simulate	changes	in	the	economic	incentives	for	converting	lands.		Scenario	4	is	a	
preliminary	exploration	of	the	potential	influence	historical	impacts	of	the	PROCAMPO	
agricultural	support	program	under	the	assumptions	that	farmers	weighing	the	potential	
benefits	of	converting	land	to	cropland	respond	to	expected	PROCAMPO	payments	from	the	
government	in	the	same	way	as	they	respond	to	expected	crop	revenues	received	from	the	
market.		In	reality,	farmers	may	respond	to	these	potential	income	streams	in	different	
potential	ways	given	different	perceptions	over	their	relative	uncertainty	and	future	
evolution,	for	example.			Nevertheless,	we	maintain	this	assumption	as	a	first	
approximation.		While	we	did	not	explicitly	include	PROCAMPO	payments	in	the	model,	the	
estimated	parameters	implicitly	reflect	the	effects	of	these	payments.				Thus,	reducing	
potential	agricultural	returns	by	the	amount	of	these	payments	will	reflect	the	effect	of	
reducing	the	expected	benefits	from	crop	production,	taking	into	account	all	of	the	policies	
in	place	from	2000‐2012.		

A	question	is	by	what	amount	to	reduce	potential	agricultural	returns	given	that	not	
all	cropland	areas	were	eligible	to	receive	PROCAMPO	payments.			Approximately	80%	of	
currently	planted	acres	over	both	growing	seasons	received	PROCAMPO	support	last	year.		
Between	2000	and	2012,	these	payments	went	largely	to	lands	in	ejido	or	agrarian	
community	designations.			From	our	analysis	of	the	PROCAMPO	data	from	1999	to	2011,	
about	85%	of	lands	receiving	payments	nationally	were	clearly	identified	as	being	within	
ejidos	or	agrarian	communities	,	while	about	8%	were	clearly	identifiable	as	privately	
owned.			The	relevant	issue,	however,	is	not	what	share	of	current	cropland	is	eligible	for	
PROCAMPO	payments	but	what	share	of	forest	areas	that	might	be	converted	to	crops	was	
eligible	to	receive	payments	in	the	past	and	would	be	eligible	to	receive	payments	in	the	
future.			The	share	of	lands	eligible	for	payments	could	be	significantly	higher	in	forested	
areas	if	potential	farm	sizes	are	smaller	than	in	other	areas,	which	might	especially	be	case	
on	ejdo	or	agrarian	community	lands.		Given	lack	of	additional	information,	as	a	preliminary	
exploration,	our	scenario	4	assumes	that	PROCAMPO	payments	only	went	to	lands	in	ejidos	
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and	agrarian	communities,	and	that	all	new	cropland	acres	in	these	designations	were	
entitled	to	full	level	of	payments.		In	particular,	we	reduce	the	potential	agricultural	return	
on	ejido	and	agrarian	community	lands	by	the	average	PROCAMPO	payment	received	on	the	
PROCAMPO	program	hectares	in	the	municipality	in	the	prior	year.7			While	it	is	not	the	case	
that	no	forested	lands	outside	ejidos	and	comunidades	would	have	been	eligible	to	receive	
payments,	it	is	also	likely	not	the	case	that	all	lands	within	these	lands	types	would	have	
received	payments.		We	simulate	a	scenario	where	no	lands	outside	of		ejidos	and	
comunidades	received	payments		in	order	to	be	conservative	in	not	overstating	the	impacts	
of	the	program.		

Removing	the	full	amount	of	PROCAMPO	payments	per	hectare	represents	about	a	
35%	reduction	in	the	estimated	potential	agricultural	revenues	on	forested	lands	over	the	
historical	period	for	the	median	grid	cell	in	the	ejidos	and	agrarian	communities.			This	
scenario	will	likely	underestimate	the	effect	of	PROCAMPO	outside	of	communal	land	areas,	
as	we	are	assuming	zero	effect	at	first	approximation,	but	will	likely	somewhat	
overestimate	the	program’s	effects	within	the	communal	areas	by	assuming	all	new	
croplands	in	those	designations	are	eligible	to	receive	PROCAMPO	program	payments,	
despite	the	limits	on	payments	according	to	the	size	of	fields.	

These	simulations	explore	the	effects	of	changing	just	one	variable	in	the	model,	
holding	all	others	constant.		In	reality,	all	other	variables	would	not	have	been	constant,	
most	specifically	the	starting	forest	area.		For	example,	if	deforestation	in	2000	is	lower	
(higher)	due	to	lower	(higher)	agricultural	returns,	then	starting	forest	area	would	have	
been	higher	(lower)	in	the	subsequent	year.		We	do	not	take	this	into	account	in	our	
historical	simulations	since	the	goal	is	just	to	examine	the	sensitivity	to	the	one	variable.		
Nevertheless,	for	the	purposes	of	the	future	predictions,	described	in	the	next	section,	we	
update	the	starting	forest	area	in	each	year	to	reflect	the	deforestation	in	the	previous	year.		

4.3.2.	Simulation	Results	

4.3.2.1.	Changes	in	Agricultural	Returns	

Results	from	the	simulation	at	the	national	level	are	summarized	in	Table	4.3.2	
below.			We	present	results	from	our	preferred	model	(the	“negative	binomial”),	but	include	
results	from	our	alternative	model	(the	“poisson”	without	fixed	effects)	in	the	Appendix.8		

																																																													
7	When	a	900m	cell	was	only	partially	in	communal	land	ownership,	we	estimated	a	weighted	
average	of	the	PROCAMPO	payment	assuming	the	ejido	and	agrarian	community	portions	were	
eligible	for	the	full	payment,	while	the	remainder	was	not.		

8		For	the	purposes	of	evaluating	changes	in	response	to	particular	variables,	we	prefer	the	negative	
binomial	specification	as	Pearson	test	indicates	the	data	are	not	a	good	fit	to	the	poisson	model,	even	
though	the	latter	has	a	better	fit	to	the	historical	data.				We	report	results	with	both	models	for	
comparison.		We	only	report	results	for	the	poisson	model	without	fixed	effects	as	we	are	unable	to	
conduct	simulations	with	the	“fixed	effects”	model	given	that	we	were	only	able	to	estimate	
“conditional”	fixed	effects	model,	which	does	not	actually	estimate	the	fixed	effects	for	each	of	the	
900m	cells.		Estimates	of	these	effects	are	necessary	to	make	absolute	predictions	of	the	dependent	
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Our	alternative	model	(the	“poisson”	model	without	fixed	effects)	replicates	the	observed	
quantity	of	deforestation	precisely	at	the	national	as	well	as	regional	levels.		Our	preferred	
model	has	a	somewhat	less	precise	fit,	overestimating	national	deforestation	over	the	2000‐
2012	period	by	about	120	thousand	hectares	or	6.8%,	with	a	predicted	total	forest	loss	of	
1.88	million	hectares	versus	an	observed	loss	of	1.76	million.9			Although	this	model	
provides	a	somewhat	less	precise	fit	to	the	data	in	absolute	terms,	we	focus	on	results	from	
this	model	as	it	is	our	preferred	specification	for	estimating	relative	changes	in	forest	loss	in	
response	to	changes	in	particular	variables.			

Table	4.3.2.	National	Simulation	Results	

	

	 Total	forest	loss,	
2000‐12	
(Ha)	

Difference	from	
factual	simulation	

(Ha)	

Difference	from	
factual	simulation	

(%)	

Observed	(within	
sample)*	

	
1,762,854	 ‐120,624	 ‐6.4%	

1)	Factual	simulation	 	 1,883,478	 0	 0.0%	

2)	99%	agricultural	
returns	

	
1,878,961	 ‐4,517	 ‐0.24%	

3)	101%	agricultural	
returns	

	
1,888,360	 4,882	 0.26%	

4)	90%	agricultural	
returns	

	
1,845,771	 ‐37,707	 ‐2.0%	

5)	110%	agricultural	
returns	

	
1,946,100	 62,623	 3.3%	

6)	No	PROCAMPO	
payments	

	
1,789,400	 94,078	 ‐5.0%	

*	This	“observed”	forest	loss	figure	represents	the	observed	deforestation	for	900m	cells	within	the	
sample	used	for	our	estimation.		Actual	deforestation	was	1,997,765	ha	or	13%	higher,	as	we	could	
not	use	all	the	observations	due	to	missing	data	for	some	of	the	variables.	Note:	2000‐12	forest	loss	is	
through	the	end	of	2011	but	does	not	include	deforestation	occurring	in	2012.		Results	in	this	table	
are	from	the	preferred	“negative	binomial”	model.		For	comparison,	we	report	results	from	the	
alternative	“poisson”	model	(without	fixed	effects)	in	Appendix	Table	A‐10.	

At	the	regional	level,	the	preferred	model	captures	the	general	distribution	of	forest	
loss,	by	region,	as	well	as	areas	within	and	outside	the	AATR	reference	regions.		A	
comparison	of	the	observed	versus	modeled	forest	loss	(the	“factual	simulation”)	for	
different	regions	and	land	types	is	shown	in	tables	4.4.1	and	4.4.2.			The	model	varies	in	its	
precision	by	region,	underestimating	deforestation	by	almost	10%	in	the	Yucatán	Peninsula	
(region	6),	by	about	4%	in	the	South	and	West	(regions	5	and	3),	by	7‐8%	in	the	Northwest	

																																																																																																																																																																																					

variable.		Estimating	actual	fixed	effects	proved	computationally	impossible	even	with	district‐level	
fixed	effects.	
9 For	the	purposes	of	comparing	to	the	estimates	from	our	models,	the	“observed”	forest	loss	figure	
represents	the	observed	deforestation	for	900m	cells	within	the	sample	used	for	our	estimation.		
Actual	deforestation	was	1,997,765	ha	or	13%	higher,	as	we	could	not	use	all	the	observations	due	to	
missing	data	for	some	of	the	variables. 
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(region	1)	and	Bajio	and	Northeast	(region	2),	and	by	just	1%	in	the	Center	and	East	(region	
4).		Such	variations	are	not	surprising	given	that	we	are	predicting	regional	and	sub‐
regional	forest	losses	based	on	an	empirical	estimation	of	deforestation	responses	across	
the	whole	country,	with	only	a	few	region‐specific	dummies	to	capture	region‐specific	
particularities.			

The	results	examining	the	sensitivity	of	deforestation	to	the	potential	net	benefits	
from	converting	forests	to	cropland	use	confirm	that	greater	expected	potential	agricultural	
returns	were	associated	with	increases	in	annual	deforestation,	as	expected	by	theory.			The	
simulations	based	on	our	preferred	model	indicate	that	a	1%	decrease	in	potential	
agricultural	returns	over	2000‐2012	would	have	decreased	cumulative	deforestation	
nationally	over	this	period	by	0.24%.		Conversely,	a	1%	increase	would	have	boosted	
deforestation	by	0.26%.		The	simulations	from	the	alternative	model	suggest	a	very	similar	
deforestation	response,	with	deforestation	decreasing	0.26%	for	a	1%	fall	in	agricultural	
returns,	and	increasing	0.27%	for	a	1%	increase	in	returns	(see	Appendix	table	A‐10).			
Results	for	the	10%	changes	in	returns	are	roughly	proportional,	but	show	a	more	
asymmetric	response,	with	forest	losses	decreasing	2.0%	for	at	10%	decrease	in	
agricultural	returns	and	increasing	by	3.3%	for	a	10%	increase.			

Our	final	simulation	suggests	that	decreasing	crop	returns	by	the	amount	of	
PROCAMPO	subsidies	on	ejidos	and	agrarian	community	lands	would	have	decreased	
deforestation	by	about	5%.		Given	that	this	represents	around	a	35%	decrease	in	returns,	
this	is	a	bit	less	than	proportional	to	our	finding	that	a	10%	decrease	would	have	reduced	
deforestation	by	about	2%.			Most	of	the	estimated	reductions	from	eliminating	the	
PROCAMPO	payments	on	communal	land	categories	occur	in	the	Yucatán	Peninsula	and	
South	regions.					About	46%	of	the	reductions	occur	in	the	Yucatán	Peninsula	and	about	
25%	in	the	South.	

The	finding	that	deforestation	increases	more	than	it	decreases	for	an	equivalent	
percent	increase	and	decrease	in	agricultural	returns,	respectively,	is	perhaps	surprising	if	
one	imagines	that	progressively	more	and	more	marginal	agricultural	land	is	entering	
production,	making	it	more	and	more	difficult	for	land	to	come	in.		In	part,	this	result	
reflects	the	fact	that	our	econometric	models	are	non‐linear	count	data	models,	where	the	
coefficients	are	contributions	to	a	rate	such	that	they	do	not	have	a	simple	linear	
interpretation	in	terms	of	absolute	impacts.		

The	sensitivity	to	marginal	changes	in	agricultural	returns	varies	by	region,	as	
shown	in	Table	4.3.3.			The	most	sensitive	regions	are	the	Northwest	and	Bajio	and	
Northeast,	with	the	least	sensitive	regions	being	the	Center	and	East	and	the	Yucatan	
Peninsula.			While	the	former	regions	are	estimated	to	respond	about	0.5‐0.6%	and	0.8‐
1.0%,	respectively,	for	every	1%	change	in	agricultural	returns,	the	latter	region	is	only	
estimated	to	respond	about	0.08%.		In	part	this	reflects	the	nature	of	our	simulations,	which	
considered	percentage	rather	than	absolute	changes.			As	a	result,	areas	with	larger	absolute	
levels	of	returns,	experience	larger	changes	in	absolute	returns,	for	the	same	percentage	
change.			The	larger	response	in	regions	1	and	2	reflects	the	fact	that	these	regions	have	
higher	potential	agricultural	returns	and	thus	larger	absolute	increases	and	decreases	in	
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deforestation	under	these	scenarios	(which	simulated	percentage,	rather	than	absolute	
changes)	and,	consequently,	have	more	non‐linear	changes	in	the	deforestation	rate	for	a	
given	percentage	increase	in	net	returns.					

These	regional	results	should	not	be	taken	too	literally	given	that	the	model	is	most	
appropriate	to	reflect	national‐average	responses.			However,	the	model	is	also	picking	up	
some	differences	in	the	responsiveness	to	deforestation	associated	with	forest	categories.		
The	larger	percent	response	for	an	increase	in	returns	in	regions	1	and	2	also	reflects	the	
fact	that	regions	contain	more	small	areas	of	forest.		Breaking	out	the	simulation	results	by	
starting	forest	category	within	each	region	indicates	that	the	responsiveness	to	1%	changes	
in	agricultural	returns	generally	increases	as	forest	cover	declines.		This	might	indicate	
lower	access	costs	to	these	grid	cells,	making	them	more	sensitive	to	changes	in	gross	
revenues.			However,	in	some	regions,	notably	the	South,	West,	and	Yucatan	Peninsula,	there	
is	a	U‐shape	pattern,	with	the	greatest	sensitivity	occurring	at	both	the	highest	and	lowest	
forest	categories.		

Table	4.3.3.	Regional	Simulation	Results	for	Sensitivity	to	Agricultural	Returns	

Region	

	
Factual	

simulation	
(scenario	1)	

	
99%	agricultural	returns	

(scenario	2)	
	

101%	agricultural	returns	
(scenario	3)	

	

Total	forest	
loss,		

2000‐12	
(Ha)	

	

Total	forest	
loss,	2000‐

12	
(Ha)	

Difference	
from	factual	
simulation	

(%)	

	

Total	
forest	loss,		
2000‐12	
(Ha)	

Difference	
from	factual	
simulation	

(%)	

Total	Country	 	 1,883,478  1,878,961 ‐0.24% 	 1,888,360  0.26%	

Northwest    
(Region 1) 

  68,975    68,629  ‐0.50%    69,382  0.59% 

Bajio & Northeast 
(Region 2) 

  179,624    178,142  ‐0.83%    181,373  0.97% 

West              
(Region 3) 

  57,165    56,916  ‐0.44%    57,419  0.44% 

Center and East 
(Region 4) 

  247,089    246,899  ‐0.08%    247,303  0.09% 

South           
(Region 5) 

  456,810    455,280  ‐0.33%    458,346  0.34% 

Yucatan Peninsula 
(Region 6) 

  873,816    873,096  ‐0.08%    874,538  0.08% 

Note:	Results	in	this	table	are	from	the	preferred	“negative	binomial”	model.		2000‐12	forest	loss	is	
through	the	end	of	2011	but	does	not	include	deforestation	occurring	in	2012.			

These	results	suggest	that	relatively	smaller	patches	of	forests	could	contribute	
disproportionately	to	marginal	changes	in	incentives,	given	that	they	already	account	for	a	
disproportionate	share	of	deforestation	relative	to	the	forest	area		(see	national	modeling	
appendix	for	more	discussion	of	this	issue).			At	the	same	time,	relatively	more	intact	forests	
in	some	regions	appear	to	be	at	a	potential	economic	tipping	point	for	deforestation,	where	
changes	in	net	returns	will	cause	them	to	begin	a	deforestation	process,	producing	a	jump	in	
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annual	deforestation,	and	perhaps	even	more	cumulative	deforestation	over	the	longer	
term.			

As	noted	above,	our	simulations	considered	variations	in	one	variable,	holding	all	
else	constant,	including	the	starting	forest	area.			To	fully	capture	the	effects	on	the	
dynamics	of	deforestation,	we	would	also	want	to	simulate	the	repercussions	of	
deforestation	in	one	year	on	forest	cover	and	its	effect	on	deforestation	in	the	subsequent	
years.			We	begin	to	explore	these	issues	in	the	next	section	where	we	consider	a	forward‐
looking	simulation	based	on	an	increase	in	agricultural	returns	as	well	as	potential	carbon	
payments	for	avoided	deforestation.	

4.4.	Future	projections	

We	conduct	a	future‐oriented	simulation	under	a	“business	as	usual”	scenario	as	
well	as	a	series	of	policy	cases	where	we	introduce	a	hypothetical	comprehensive	incentive	
to	maintain	forest	carbon.				As	discussed	further	below,	a	variety	of	policy	approaches	could	
be	used	to	capture	potential	financial	flows	for	REDD+	and	implement	low‐emissions	
practices	in	Mexico.		Our	projections	serve	to	quantify	and	map	the	potential	reductions	
available	for	future	REDD+	policy	in	Mexico,	rather	than	to	model	a	particular	REDD+	
implementation	strategy	in	particular.			These	simulations	also	provide	an	input	for	local	
modeling	future	deforestation	at	the	level	of	each	of	the	seven	AATRs,	as	discussed	in	
Section	4.			

	The	future	simulations	account	for	the	repercussions	of	deforestation	from	one	
year	to	the	next	by	modeling	deforestation	at	each	900m	cell	and	accounting	for	its	effect	on	
starting	forest	cover	area	and	category	at	the	start	of	the	subsequent	year.			While	our	
alternative	(“poisson”	model)	could	provide	better	predictions,	we	focus	on	our	main	model	
(the	“negative	bionomial”)	which	should	be	more	appropriate	for	examining	the	relative	
changes	between	the	BAU	and	policy	cases.			We	present	results	from	the	alternative	model	
in	the	Appendix	for	comparison	purposes.		

For	the	business‐as‐usual	(BAU)	scenario,	we	start	with	observed	forest	cover	in	
2012	(the	last	year	of	our	data	from	the	University	of	Maryland)	and	then	model	its	
evolution	for	each	900m	cell	at	an	annual	time	step	through	2024.		We	also	start	with	
agricultural	returns	as	of	2012	and	hold	these	constant	for	the	scenario.		This	involves	
almost	a	tripling	of	mean	and	median	agricultural	returns	relative	compared	to	the	2000‐
2012	period,	though	this	varies	over	space.		Combining	the	data	over	all	the	years	and	900m	
cells,	the	average	potential	returns	rise	from	4,003	to	15,464	MXN$/ha	while	median	
returns	rise	from	2,470	to	9,346	MXN$/ha.			The	increase	in	median	(and	usually	average	
returns)	is	larger	in	the	Northwest,	Bajio	and	Northeast,	and	West	regions,	relative	to	in	the	
Center	and	East,	South	and	Yucatan	Peninsula.			

Due	to	missing	data	on	some	of	the	variables,	our	estimation	and	historical	
scenarios	were	based	on	a	sub‐sample	of	the	data	that	capture	87%	of	the	historical	
deforestation	over	2000‐2012.			Nevertheless,	there	is	fewer	missing	data	in	the	later	years	
of	the	database.		The	sample	used	for	our	future	predictions	captured	98%	of	the	observed	
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deforestation	in	2011.			Given	that	our	data	is	thus	close	to	complete,	we	did	not	make	any	
additional	adjustments	to	the	future	forest	loss	projections	for	this	missing	information.		

For	the	policy	scenarios,	we	conduct	a	series	of	simulations	where	we	introduce	a	
comprehensive	carbon	incentive	per	ton	of	CO2,	starting	at	USD$5	and	rising	progressively	
to	$100(assuming	an	exchange	rate	of	MXN$13/USD).		Specifically,	we	consider	“prices”	of	
$5,	$10,	$20,	$30,	$50,	$60,	$70,	$80,	and	$100	per	ton	of	CO2,	so	as	to	trace	out	a	“marginal	
cost”	curve	based	on	estimated	emissions	reductions	from	avoided	deforestation	at	
different	price	points.				

We	simulate	an	economically	ideal	or	most	comprehensive	incentive	which	can,	in	
theory,	be	viewed	as	one	where	all	landowners	either	receive	a	subsidy	for	land	
preservation	or	pay	a	tax	for	land	conversion	for	instantaneously	releasing	the	carbon	
content	of	all	above‐ground	live	biomass.			More	practically,	one	can	think	of	this	as	a	policy	
that	reduces	the	“business‐as‐usual”	agricultural	benefits	(e.g.	by	reducing	government	
subsidies)	and	translating	them	into	economic	benefits	for	low‐emissions	practices	that	
avoid	deforestation.				This	is	implemented	in	our	simulations	by	reducing	the	agricultural	
returns	by	the	amount	of	the	foregone	carbon	revenue	if	forests	were	to	be	deforested.		We	
do	not	model	any	potential	shifts	or	“leakage”	of	deforestation	in	response	to	possible	
induced	changes	in	agricultural	returns	or	other	effects.			We	base	our	analysis	on	the	
above‐ground	carbon	density	data	from	WHRC/MREDD	(Cartus,	et	al.,	2014).			For	
simplicity,	this	initial	analysis	did	not	consider	below‐ground	or	soil	carbon	losses.			

While	this	analysis	considers	a	notional	carbon	incentive	that	can	be	translated	into	
a	particular	“price”	and	thought	about	as	a	tax	or	subsidy	for	each	landowner	or	other	land	
user,	as	already	note,	the	results	do	not	presuppose	a	particular	REDD+	policy	based	on	
direct	payments	to	landowners,	such	as	a	traditional	payments	for	environmental	services	
(PES)	program.				Rather,	our	analysis	serves	to	identify	the	cost‐effective	potential	
emissions	reductions,	and	their	spatial	distribution,	given	the	“price”	in	terms	of	foregone	
agricultural	revenues	on	the	lands	not	being	deforested.			This	analysis	serves	to	quantify	
and	spatially	identify	the	most	cost‐effective	reductions	that	could	be	potentially	targeted	
under	a	variety	of	potential	policy	interventions	and	approaches	for	promoting	low‐
emissions	rural	development	and	reduced	deforestation	emissions	in	Mexico.				Moreover,	
while	agricultural	production	might	be	foregone	on	the	particular	lands	not	being	
deforested,	agriculture	could	be	intensified	and	expanded	on	non‐forest	lands	under	a	low‐
emissions	agricultural	development	strategy.		This	means	that	agricultural	production	could	
be	maintained	or	increased	overall	at	the	same	time	that	expansion	of	agriculture	into	forest	
areas	is	decreased.			

4.4.1.1.“Business‐as‐usual”	projection	

Table	4.4.1	shows	our	“business	as	usual”	projections	for	2014‐2024	relative	to	the	
observed	and	modeled	deforestation	in	annualized	terms	during	the	historical	period	
(2000‐2012).			Results	are	presented	nationally	as	well	as	by	AATR	reference	regions	and	
different	land	ownership	categories.		Based	on	the	economic	profitability	of	agriculture	and	
starting	forest	cover	in	2012,	the	model	predicts	an	overall	27%	increase	in	annual	
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deforestation	in	Mexico	over	the	next	ten	years,	relative	to	the	recent	past.			Estimated	
changes	reported	are	relative	to	the	modeled	deforestation	(the	“factual	simulation”)	for	
2000‐2012.		Most	of	this	increase	is	due	to	a	significant	increase	in	deforestation	in	the	
South	and	Yucatan	Peninsula	regions,	which	assumes	an	even	greater	share	of	national	
deforestation,	as	some	other	regions	(West	and	Center/East	regions)	experience	a	decrease	
in	annual	deforestation.				The	higher	agricultural	profits	in	2012	relative	to	the	historical	
period	accounts	for	the	overall	increase	in	deforestation	nationwide	and	in	the	more	
forested	areas.			

Despite	the	significant	increase	in	the	average	and	median	agricultural	returns	
compared	to	the	historical	period,	the	overall	increase	in	deforestation	is	smaller	than	
suggested	by	our	simulations	of	smaller	marginal	changes	in	agricultural	returns	in	section	
2.			This	is	likely	due	to	the	fact	that	we	are	comparing	results	across	a	whole	historical	
period	with	a	wide	range	in	returns,	including	returns	similar	to	our	projected	ones	at	the	
end	of	the	period.			We	are	also	now	accounting	for	the	declining	forest	areas	within	each	
grid	cell,	which	further	reduces	potential	deforestation.					The	projected	decrease	in	some	
regions	relative	to	the	historical	period	is	likely	due	to	smaller	remaining	areas	of	forest	in	
2012	relative	to	the	historical	period.	

As	noted	before,	our	models	are	intended	for	national	analysis	but	generally	capture	
regional	distributions.		Map	4.4.1	shows	the	spatial	distribution	of	projected	aggregate	
forest	loss	under	the	business‐as‐usual	scenario	for	the	next	10	years	(2014	until	the	start	
of	2024).					The	map	shows	that	the	greatest	amount	of	deforestation	is	projected	to	occur	
in	the	South	and	Yucatan	Peninsula	regions.		Table	4.4.2	shows	how	these	regions	are	not	
only	projected	to	contribute	the	most	deforestation	in	absolute	terms,	but	are	also	projected	
to	experience	the	greatest	percentage	increases	in	deforestation,	with	projected	
deforestation	rising	by	72%	in	the	South	and	by	26%	in	the	Yucatan	Peninsula.			In	contrast,	
deforestation	increases	by	17%	in	the	Northwest,	3%	in	the	Bajio	and	Northeast	and	
percent	decreases	in	the	West	and	Center/East	regions.				Our	alternative	model	(the	
“poisson”)	also	predicts	an	increase	in	national	deforestation	of	27%,	with	the	greatest	
proportional	increases	occurring	in	the	South	and	Yucatan	Peninsula	(Appendix	table	A‐11).				
The	breakdown	across	regions	is	a	bit	different	in	absolute	terms,	but	the	qualitative	results	
are	still	generally	the	same.			This	alternative	model,	which	may	be	more	precise	for	
predictive	purposes,	shows	relatively	smaller	increases	in	the	South	and	Yucatan	(41	and	
48%,	respectively)	and	larger	increases	(smaller	decreases)	in	the	rest	of	the	country.				

The	relatively	greater	projected	increases	in	deforestation	in	the	South	and	Yucatan	
compared	to	the	rest	of	the	country	contrast	with	the	historical	simulation	results	in	Table	
4.3.3	for	marginal	changes	in	returns	of	plus	or	minus	1%.			While	other	regions	appear	
more	sensitive	to	small	changes	in	returns,	the	greater	cumulative	deforestation	in	the	
South	and	Yucatan	in	the	future	projections	may	be	due	in	part	by	the	much	larger	changes	
in	returns	being	considered	in	the	business‐as‐usual	projection,	which	elicits	a	larger	
response	from	all	forest	areas.		The	other	part	of	the	story	is	that	we	are	now	accounting	for	
how	forest	areas	evolve	over	time.		Thus,	areas	with	small	initial	forest	cover	might	respond	
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with	a	large	proportional	changes	in	deforestation	in	the	short	run	but	then	have	little	
forest	cover	remaining	to	continue	having	forest	losses.			

	
Table	4.4.1.	Comparison	of	historical	change	and	future	predictions,	2014‐2024,	by	
AATR	reference	regions	and	land	ownership	category	

Region/Land	
Category	 	

Observed	
forest	loss	
(in	sample),	
2000‐12	
(Ha/yr)*	

	

Modeled	
forest	loss	
(factual	

simulation),	
2000‐12	
(Ha/yr)	

Business‐
as‐usual	
(BAU)	
forest	
loss,	

2014‐24	
	(Ha/yr)	

	

Change	in	
annual	forest	

loss,	
projected	
BAU	vs.	
modeled	
2000‐12	
(Ha/yr)	

%	change	
in	annual	
forest	loss,	
projected	
BAU	vs.	
modeled	
2000‐12	
(%)	

Total	Country	 	 160,259	 171,225 217,963 	 46,738	 27%

		Non‐AATR	 	 110,299	 113,679 131,434 	 17,755	 16%

		AATR	regions	 	 49,960	 57,546 86,528 	 28,982	 50%

Mixteca	 	 1,298	 1,902 3,180 	 1,278	 67%

Sierra	Norte	 	 1,827	 1,055 1,920 	 865	 82%

Sierra	Pucc	 	 35,471	 41,078 57,863 	 16,785	 41%

Chiapas		 	 4,546	 7,165 12,847 	 5,682	 79%

Raramuri	 	 1,725	 2,107 2,556 	 449	 21%

Valle	de	Bravo	 	 481	 498 417 	 ‐81	 ‐16%

Itsmo	 	 4,613	 3,739 7,745 	 4,006	 107%

Comunidades	 	 10,531	 10,288 21,255 	 10,967	 107%

Ejidos	 	 89,613	 92,800 113,070 	 20,269	 22%

Protected	areas			 	 4,778	 6,529 11,542 	 5,013	 77%

Other	lands	 	 55,337	 61,608 72,096 	 10,488	 17%

*	This	“observed”	forest	loss	figure	represents	the	observed	deforestation	for	900m	cells	within	the	
sample	used	for	our	estimation.		Actual	national	deforestation	was	1,997,765	ha	or	13%	higher	than	
the	in‐sample	amount	as	all	observations	could	not	be	used	due	to	missing	data	on	some	variables.	
Note:	The	AATR	regions	in	this	table	are	the	AATR	“reference	regions”	used	in	the	local	modeling	
discussed	in	section	4.		The	reference	regions	include	the	AATR	site	plus	a	50km	buffer.			Results	in	
this	table	are	from	the	preferred	“negative	binomial”	model.	For	comparison,	we	report	results	from	
the	alternative	“poisson”	model	in	Appendix	Table	A‐11.	Protected	areas	are	the	federally	protected	
areas	considered	in	this	analysis.		2000‐12	forest	loss	is	through	the	end	of	2011	but	does	not	include	
deforestation	occurring	in	2012.		Similarly,	2014‐24	forest	loss	is	through	the	end	of	2023	but	does	
not	include	deforestation	occurring	in	2024.		
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Table	4.4.2.Comparison	of	historical	change	and	future	predictions,	2014‐2024,	by	
national	regions	and	AATR	Reference	Regions	

Region/Land	
Category	

	
Observed	
forest	loss	

(in	
sample),	
2000‐12	
(Ha/yr)*	

	

Modeled	
forest	loss	
(factual	

simulation),	
2000‐12	
(Ha/yr)	

Business‐
as‐usual	
(BAU)	

forest	loss,	
2014‐24	
(Ha/yr)	

	

Change	in	
annual	forest	

loss,	
projected	
BAU	vs.	
modeled	
2000‐12	
(Ha/yr)	

%	change	in	
annual	forest	

loss,	
projected	
BAU	vs.	
modeled	
2000‐12	
(%)	

Northwest	(Region	1)	 	 	

		Total		 	 5,751	 6,270 7,187 	 917	 15%

			Non‐AATR	 	 4,025	 4,163 4,632 	 469	 11%	

		AATR	regions	 	 1,725	 2,107 2,556 	 449	 21%	

Bajio	&	Northeast	(Region	2)	 	 	

		Total	 	 15,125	 16,329 18,154 	 1,825	 11%

		Non‐AATR	 	 15,120	 16,320 18,151 	 1,831	 11%

		AATR	regions	 	 4	 10 3 	 ‐7 ‐70%

West	(Region	3)	 	 	 	 	

		Total		 	 4,969	 5,197 5,267 	 70 1%

		Non‐AATR	 	 4,630	 4,973 5,048 	 75 2%

		AATR	regions	 	 339	 224 219 	 ‐5 ‐2%

Center	and	East	(Region	4)	 	 	

		Total		 	 22,777	 22,463 15,833 	 ‐6,630	 ‐30%

		Non‐AATR	 	 21,684	 21,176 14,799 	 ‐6,377	 ‐30%

		AATR	regions	 	 1,093	 1,286 1,034 	 ‐252	 ‐20%

South	(Region	5)	 	 	 	 	

		Total	 	 39,863	 41,528 71,262 	 29,734	 72%

		Non‐AATR	 	 28,535	 28,688 46,408 	 17,720	 62%

		AATR	regions	 	 11,328	 12,840 24,854 	 12,014	 94%

Yucatan	Peninsula	(Region	6)	 	 	

		Total		 	 71,776	 79,438 100,260 	 20,822	 26%

		Non‐AATR	 	 36,304	 38,359 42,397 	 4,038	 11%	

		AATR	regions	 	 35,472	 41,078 57,863 	 16,785	 41%	

*	This	“observed”	forest	loss	figure	represents	the	observed	deforestation	for	900m	cells	within	the	
sample	used	for	our	estimation.		Actual	national	deforestation	was	1,997,765	ha	or	13%	higher	than	
the	in‐sample	amount	as	all	observations	could	not	be	used	due	to	missing	data	on	some	variables.		
Note:	The	AATR	regions	in	this	table	are	the	AATR	“reference	regions”	used	in	the	local	modeling	
discussed	in	section	4.		The	reference	regions	include	the	AATR	site	plus	a	50km	buffer.			Results	in	
this	table	are	from	the	preferred	“negative	binomial”	model.	For	comparison,	we	report	results	from	
the	alternative	“poisson”	model	in	Appendix	Table	A‐12.		2000‐12	forest	loss	is	through	the	end	of	
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2011	but	does	not	include	deforestation	occurring	in	2012.		Similarly,	2014‐24	forest	loss	is	through	
the	end	of	2023	but	does	not	include	deforestation	occurring	in	2024.	
	

The	model	predicts	that	most	new	deforestation	in	absolute	terms,	as	well	as	most	
absolute	increases	in	deforestation,	will	occur	on	ejido	lands	(Table	4.4.2).		In	percentage	
terms,	however,	forest	losses	within	ejidos	are	projected	to	increase	by	22%	or	less	than	
the	national	average.			In	contrast,	agrarian	communities	(comunidades)	are		projected	to	
experience	the	largest	increase,	followed	by	deforestation	within	protected	areas,	with	
projected	increases	of	107%	and	77%,	respectively.		Our	alternative	model	projects	similar	
qualitative	patterns,	though	the	relative	differences	among	land	types	are	smaller.		

Map	4.4.1	indicates	that	the	AATRs	are	not	all	located	in	the	areas	with	the	highest	
projected	future	deforestation.		Nevertheless,	as	shown	in	Table	4.4.1,	overall	the	AATR	
reference	regions	have	higher	projected	deforestation	increases	than	other	forested	areas	
(50%	versus	16%	for	the	lands	outside	these	reference	areas).		The	AATR	reference	regions	
discussed	here	are	those	used	in	the	local	modeling	(section	4),	and	include	the	specific	
REDD+	early	action	area	sites,	as	well	as	a	surrounding	50km	buffer.		Given	the	national	
scale	of	the	modeling,	results	are	more	appropriate	at	larger	scales	of	analysis,	dictating	our	
focus	on	larger	versus	smaller	areas	surrounding	the	AATRs.	

Looking	specifically	at	the	AATR	reference	regions,	the	model	predicts	the	greatest	
increase	in	the	Itsmo	and	Sierra	Norte	region	and	the	smallest	increases	in	the	Raramuri	
and	Valle	de	Bravo	regions,	with	the	latter	region	actually	experiencing	a	decline	in	
deforestation.				The	alternative	model	generates	similar	qualitative	results,	though	it	
predicts	a	smaller	relative	increase	in	deforestation	in	the	Chiapas	AATR	reference	region	
(26%	versus	79%	increase	in	our	preferred	model).		

The	AATR	reference	regions	not	only	have	higher	projected	deforestation	versus	
other	lands	on	aggregate	nationally,	but	they	also	generally	have	higher	projected	
deforestation	relative	to	other	lands	within	each	region.		The	comparison	of	AATR	vs.	non‐
AATR	lands	within	each	region	is	shown	in	table	4.4.2.			The	AATR	reference	regions	
generally	have	higher	projected	increases	in	deforestation	(or	smaller	projected	decreases	
in	the	case	of	the	Center	and	East),	relative	to	other	forested	lands	in	the	same	region.			The	
exceptions	are	the	Bajio	and	Northeast	(Region	2)	and	West	(Region	3),	but	these	results	
are	not	indicative	given	that	these	regions	contained	trivial	amounts	of	lands	within	any	of	
the	AATRs	reference	areas.			Our	alternative	model	generates	similar	findings	(Table	A‐12).		

4.4.1.2.	Carbon	Incentive	Projections	 	

As	an	example	of	our	carbon	incentive	results,	we	present	results	for	a	hypothetical	
carbon	incentive	of	USD	$10/t	CO2	in	table	4.4.3.		This	carbon	incnetive	translates	into	a	
median	(average)	subsidy/tax	of	about	4700	(5200)	MXN$/ha,	compared	to	median	
(average)	agricultural	returns	of	about	9,300	(15,400)	MXN$/ha.				This	represents	a	
median	reduction	in	agricultural	returns	of	25%,	with	more	than	a	100%	reduction	on	
average.			Under	this	simulated	carbon	incentive	of	$10/tC,	deforestation	falls	nationally	by	
an	estimated	35%.				Map	4.4.2	shows	the	spatial	distribution	in	the	reduction	in	forest	loss	
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under	the	$10	carbon	incentive	(relative	to	the	BAU	case	shown	in	map	4.4.1)	while	map	
4.4.3	shows	the	remaining	deforestation.				The	results	for	the	alternative	model	and	at	the	
level	of	each	AATR	reference	region	are	shown	in	the	Appendix	in	maps	A‐15	to	A‐24.			

In	general,	the	regions	projected	to	have	the	greatest	increases	in	deforestation	over	
the	next	decade	are	also	estimated	to	be	the	most	responsive	to	reducing	deforestation	
under	a	carbon	incentive.		Overall,	AATR	reference	regions	are	estimated	to	reduce	
deforestation	by	41%	compared	to	a	reduction	of	32%	for	non‐AATR	lands.		The	analysis	
suggests	significant	reductions	in	the	specific	AATRs,	ranging	from	35%	in	Raramuri	to	58%	
in	Sierra	Norte.			All	of	the	AATR	demonstrate	greater	potential	reductions	than	the	non‐
AATR	regions	of	the	country.		However,	the	greatest	potential	reductions	occur	in	the	
Yucatán	Peninsula	and	South	as	seen	in	map	4.4.2.		Similarly,	most	of	the	remaining	
deforestation	is	distributed	in	these	regions	(map	4.4.3).			

Comunidades	and	protected	areas	were	the	land	types	projected	to	have	the	biggest	
proportional	increase	in	forest	losses	over	the	next	10	years	and	are	also	estimated	to	have	
the	greatest	percent	declines	in	response	to	a	carbon	incentive.			In	absolute	terms,	
however,	the	greatest	total	estimated	reductions	occur	on	ejidos,	as	well	as	private	and	
other	land	types	apart	from	comunidades	or	national	protected	areas.			

In	addition	to	considering	changes	in	forest	area	as	a	result	of	a	carbon	price,	we	
also	consider	changes	in	carbon	dioxide	emissions	from	losses	in	above‐ground	biomass.		
Map	4.4.4	shows	the	spatial	distribution	of	reduced	emissions	from	above‐ground	forest	
biomass,	associated	with	the	reduced	forest	loss	scenario	at	a	$10	price	shown	in	map	4.4.2.	
Estimated	emissions	reductions	for	the	$10	carbon	incentive	are	also	combined	with	those	
from	the	other	carbon	incentive	simulations	and	are	used	to	construct	cost	curves	shown	in	
Figures	4.4.1	and	4.4.2.		These	figures	show	the	estimated	above‐ground	forest	carbon	
emissions	avoided	annually	under	each	of	our	carbon	incentive	scenarios,	relative	to	the	
business‐as‐usual	projection	over	the	10	years	starting	in	2014.					

Under	the	business‐as‐usual	scenario,	represented	by	a	carbon	incentive	of	zero,	
average	annual	CO2	emissions	from	deforestation	are	approximately	17	million	tons	of	CO2	
at	the	national	level.		Despite	reflecting	increases	in	future	deforestation,	these	are	about	
37%	of	the	45.3	MtCO2	for	2010	reported	for	land‐use	change	emissions	in	the	fifth	national	
communications	to	the	United	Nations	Framework	Convention	on	Climate	Change	
(SEMARNAT/INECC,	2012)	.		There	are	several	possible	explanations.				Our	estimates	are	
based	on	new	sources	of	information	on	both	forest	loss,	as	well	as	on	above‐ground	forest	
carbon	densities.		Also,	the	numbers	in	the	national	communications	include	conversion	of	
grasslands	(pastizales),	which	were	not	considered	in	our	analysis.			Furthermore,	our	
analysis	only	considered	emissions	from	above‐ground	forest	carbon	stocks,	without	
considering	potential	losses	of	below‐ground	forest	carbon	or	soil	carbon.			Estimates	of	
above	and	below‐ground	forest	carbon	stocks	in	Mexico	from	FAO	(2005)	and	Ruesch	and	
Gibbs	(2008)	are	approximately	95	and	113	tons	of	C	per	hectare.		In	contrast,	the	mean	and	
median	forest	hectare	in	2012	had	an	estimated	23.6	and	21.8	tons	of	C/ha,	respectively,	
according	to	the	estimates	used	in	our	study	(Cartus,	et	al.,	2014).		The	carbon	densities	for	
the	deforested	hectares	in	our	projections	from	2014‐2024	were	a	bit	lower,	with	a	mean	of	
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21.7	and	median	of	19.8	tC/ha.		A	detailed	comparison	of	these	numbers	was	beyond	the	
scope	of	our	analysis.	

Focusing	only	on	the	above‐ground	carbon,	we	find	that	there	is	rising	potential	
nationally	to	reduce	emissions	at	carbon	incentives	ranging	from	$5	to	$100,	at	which	point	
about	90%	of	the	emissions	are	avoided.			Close	to	half	of	the	estimated	reductions	available	
at	prices	of	$10/ton	or	below	and	more	than	two	thirds	of	the	estimated	reductions	
available	at	prices	of	$20/ton	or	below.		The	national	and	regional	cost	curves	are	rising	at	
an	increasing	rate,	indicating	that	it	costs	more	and	more	to	avoid	deforestation	on	lands	
with	greater	agricultural	potentials.				

While	there	are	potential	reductions	available	from	all	regions	at	prices	up	to	$20‐
$30,	the	bulk	of	estimated	reductions	is	from	the	South	and	Yucatan	Peninsula,	which	
account	for	about	35%	and	60%	of	the	total	potential	up	to	$100.				Reductions	from	the	
other	regions	collectively	rise	steeply	and	are	exhausted	at	prices	of	$20	and	$30,	at	which	
point	the	cost	curves	turn	vertical,	with	about	1	million	tons	of	emissions	avoided	in	total.		
This	reflects	the	higher	agricultural	returns	in	these	regions	as	well	as	smaller	total	amount	
of	forest	losses	and	carbon	emissions	that	can	be	avoided.			In	contrast,	the	cost	curves	for	
the	South	and	Yucatan	Peninsula	do	not	begin	to	turn	upwards	sharply	until	about	$50.		At	
prices	of	$5,	the	South	and	Yucatan	Peninsula	account	for	43%	and	50%	of	the	cost‐effective	
potential,	respectively.		The	cost	of	reductions	in	the	South	rises	somewhat	faster	than	in	
the	Yucatan	Peninsula,	with	the	South	representing	a	smaller	share	of	the	cost‐effective	
potential	at	progressively	higher	prices	(e.g.	37%	versus	56%	for	the	Yucatan	at	a	price	of	
$50).			

Figure	4.4.2	breaks	out	the	cost	curves	according	to	lands	within	and	outside	of	the	
AATR	reference	regions.		These	show	that	the	broad	AATR	regions	on	aggregate	contain	
more	than	half	of	the	cost‐effective	potential	reductions	in	emissions	at	each	price	point,	
with	about	55%	of	the	total	modeled	potential	for	all	of	Mexico.			As	already	noted,	our	
exercise	did	not	presuppose	the	implementation	of	an	actual	carbon	price	or	payment	
system.		Rather,	we	consider	a	hypothetical	carbon	incentive	so	as	to	estimate	the	most	
cost‐effective	reductions	potential	available	for	a	given	reduction	in	foregone	agricultural	
revenues	on	the	particular	lands	not	being	deforested	(though	of	course	agricultural	
production	might	still	increase	on	other	lands).			These	cost‐effective	reductions	could	be	
achieved	in	practice	through	a	variety	of	policy	approaches.	Also,	while	our	analysis	
considered	an	idealized	policy	case,	which	is	indicative	of	the	potential	for	REDD+	policies,	
additional	analysis	would	be	needed	to	consider	impacts	on	deforestation,	including	
possible	“leakage,”	as	well	as	other	economic	implications	under	more	realistic	and	likely	
less	comprehensive	policy	approaches.			
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Table	4.4.3.	Future	Predictions,	2014‐2024,	Business‐as‐Usual	and	$10/ton	CO2	
Policy	Case,	for	AATR	and	non‐AATR	regions	

Region/Land	
category	

	

Business‐
as‐usual	
(BAU)	

forest	loss,	
2014‐24	
	(Ha/yr)	

Forest	loss,	
2014‐24	
with	

$10/tCO2	
(Ha/yr)	

	

Change	in	
annual	

forest	loss,	
$10/tCO2	
vs.	BAU		
(Ha/yr)	

%	change	in	
annual	

forest	loss,	
$10/tCO2	
vs.	BAU		
(%)	

Total	Country	 	 217,963	 141,106 	 ‐76,856 ‐35%

		Non‐AATR	 	 131,434	 89,727	 	 ‐41,707	 ‐32%	
		AATR	regions	 	 86,528	 51,379	 	 ‐35,149	 ‐41%	
Mixteca		 	 3,180	 1,466	 	 ‐1,714	 ‐54%	
Sierra	Norte	 	 1,920	 802	 	 ‐1,118	 ‐58%	
Sierra	Pucc	 	 57,863	 37,082	 	 ‐20,781	 ‐36%	
Chiapas		 	 12,847	 6,324	 	 ‐6,523	 ‐51%	
Raramuri	 	 2,556	 1,668	 	 ‐887	 ‐35%	
Valle	de	Bravo	 	 417	 242	 	 ‐175	 ‐42%	
Itsmo	 	 7,745	 3,795	 	 ‐3,950	 ‐51%	
Comunidades	 	 21,255	 9,837	 	 ‐11,418	 ‐54%	
Ejidos	 	 113,070	 77,174	 	 ‐35,895	 ‐32%	
Protected	areas	 	 11,542	 5,804	 	 ‐5,738	 ‐50%	
Other	lands	 	 72,096	 48,290	 	 ‐23,805	 ‐33%	
Note:	The	AATR	regions	in	this	table	are	the	AATR	“reference	regions”	used	in	the	local	modeling	
discussed	in	section	4.		The	reference	regions	include	the	AATR	site	plus	a	50km	buffer.			Results	in	
this	table	are	from	the	preferred	“negative	binomial”	model.	For	comparison,	we	report	results	from	
the	alternative	“poisson”	model	in	Appendix	Table	A‐13.	Protected	areas	are	the	federally	protected	
areas	considered	in	this	analysis.		2014‐24	forest	loss	is	through	the	end	of	2023	but	does	not	include	
deforestation	occurring	in	2024.	
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Map	4.4.1.	Projected	“Business	as	Usual”	(BAU)	Forest	Loss	2014‐2024		

	

Note:	This	map	shows	projected	deforestation	at	the	900m	(81ha)	resolution	over	10	years	starting	
in	2014,	based	on	information	on	forest	cover	in	2012,	estimated	model	parameters	from	2000‐12,	
and	holding	constant	agricultural	profits	at	2012	levels.		Projections	are	from	the	preferred	“negative	
binomial”	model.		For	comparison,	we	report	results	from	the	alternative	“poisson”	model	in	
Appendix	Map	A‐11.		Green	areas	indicate	no	loss	of	forest	cover.		Progressively	redder	areas	indicate	
greater	amounts	of	forest	loss.		Grey	areas	are	those	without	any	forest	cover	in	2012	and	hence	no	
projected	forest	loss.		2014‐24	forest	loss	is	through	the	end	of	2023	but	does	not	include	
deforestation	occurring	in	2024.	
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Map	4.4.2.	Projected	Avoided	Forest	Loss	2014‐2024,	with	$10/ton	CO2	incentive	

	
Note:	This	map	shows	projected	reductions	in	deforestation	at	the	900m	(81ha)	resolution	over	10	
years	starting	in	2014,	based	on	introducing	an	economically	ideal	comprehensive	carbon	price	of	
$10t/CO2	on	forest	carbon	losses.			Reductions	are	relative	to	the	“business‐as‐usual”	(BAU)	scenario	
in	Map	4.4.1.		This	analysis	does	not	consider	potential	price	adjustments	or	other	possible	sources	of	
induced	shifts	in	deforestation	and	emissions	(i.e.	“leakage”).		Projections	are	from	the	preferred	
“negative	binomial”	model.		For	comparison,	we	report	results	from	the	alternative	“poisson”	model	
in	Appendix	Map	A‐12.		White	color	areas	indicate	no	reduction	in	forest	loss	as	a	result	of	the	carbon	
price.			Light	to	dark	yellow,	followed	by	light	to	dark	green,	areas	indicate	progressively	greater	
amounts	of	avoided	deforestation	under	the	carbon	price	relative	to	the	BAU	case.		Grey	areas	are	
those	without	any	forest	cover	in	2012	and	hence	no	projected	reduction	in	forest	loss.		2014‐24	
forest	loss	is	through	the	end	of	2023	but	does	not	include	deforestation	occurring	in	2024.	

	 	



	

43	

	

Map	4.4.3.	Projected	Remaining	Forest	Loss	with	$10/ton	CO2	incentive,	2014‐2024	

	
Note:	This	map	shows	the	projected	forest	loss	at	the	900m	(81ha)	resolution	over	10	years	starting	
in	2014	that	is	estimated	to	remain	after	the	introduction	of	the	$10t/CO2	on	forest	carbon	losses	
(i.e.	this	map	shows	the	remaining	forest	loss	starting	from	the	forest	loss	in	map	4.4.1	and	
subtracting	out	the	avoided	forest	loss	in	map	34.4.2).					Projections	are	from	the	preferred	“negative	
binomial”	model.		For	comparison,	we	report	results	from	the	alternative	“poisson”	model	in	
Appendix	Table	A‐13.	Green	areas	indicate	no	loss	of	forest	cover.	Progressively	redder	areasindicate	
greater	amounts	of	forest	loss.		Grey	areas	are	those	without	any	forest	cover	in	2012	and	hence	no	
projected	forest	loss.	2014‐24	forest	loss	is	through	the	end	of	2023	but	does	not	include	
deforestation	occurring	in	2024.	
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Map	4.4.4.	Projected	Avoided	Emissions	2014‐2024,	with	$10/ton	CO2	incentive	

	

Note:	This	map	shows	projected	reductions	in	above‐ground	carbon	losses	at	the	900m	(81ha)	
resolution	over	10	years	starting	in	2014,	based	on	introducing	an	economically	ideal	comprehensive	
carbon	price	of	$10t/CO2	on	forest	carbon	losses.			Reductions	are	relative	to	the	forest	losses	in	the	
“business‐as‐usual”	(BAU)	scenario	in	Map	4.4.1.		This	analysis	does	not	consider	potential	price	
adjustments	or	other	possible	sources	of	induced	shifts	in	deforestation	and	emissions	(i.e.	
“leakage”).		Projections	are	from	the	preferred	“negative	binomial”	model.		For	comparison,	we	
report	results	from	the	alternative	“poisson”	model	in	Appendix	Map	A‐14.		White	color	areas	
indicate	no	reduction	in	forest	losses	and	associated	carbon	emissions	as	a	result	of	the	carbon	price.			
Light	to	dark	yellow,	followed	by	light	to	dark	green,	areas	indicate	progressively	greater	amounts	of	
avoided	deforestation	and	associated	emissions	under	the	carbon	price	relative	to	the	BAU	case.		
Grey	areas	are	those	without	any	forest	cover	in	2012	and	hence	no	projected	reduction	in	forest	
losses	and	associated	emissions.		2014‐24	forest	loss	is	through	the	end	of	2023	but	does	not	include	
deforestation	occurring	in	2024.	
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Figure	4.4.1.		Estimated	cost	curves	for	CO2	emissions	reductions	from	above‐ground	
forest	carbon	losses	in	Mexico,	by	region	

	

Figure	4.4.2.		Estimated	cost	curves	for	reducing	emissions	from	above‐ground	forest	
carbon	losses	in	Mexico,	by	AATR	and	non‐AATR	regions.		

	



	

46	

	

5. Local	Modeling	of	Deforestation	

5.1.	Introduction	

5.1.1.	Overall	approach	

The	national‐level	modeling	captures	drivers	and	possible	deforestation	outcomes	
at	one	scale	that	is	only	arguably	very	relevant	to	the	local	scale.	One	could	also	claim	that	
dynamics	at	the	local	scale	have	a	local	character,	and	that	a	model	of	these	local	dynamics	
should	be	independent	of	relationships	derived	from	distant	lands.	Thus,	we	add	a	
component	to	this	study	that	models	deforestation	based	solely	on	local	data.	We	do	this	
for	the	seven	focus	areas	selected	by	TNC.	Also,	while	both	the	national‐	and	local‐level	
analyses	are	based	on	spatial	modeling,	the	national‐level	one	is	via	modeling	economic	
incentives	that	vary	with	spatial	patterns	of	opportunity	cost.	At	the	local	level,	
opportunity	cost	is	less	variable	and	information	is	scarcer.	For	these	reasons,	we	take	a	
different	approach	to	spatial	modeling	in	the	local	case	studies.		

The	overall	approach	we	take	is	to	follow	the	fundamental	steps	found	in	the	most‐
widely	used	methodologies	for	estimating	reference	emissions	levels	(RELs)	for	REDD+	
initiatives	approved	by	the	Voluntary	Carbon	Standards	group	(VCS).	However	it	is	
important	to	note	that	this	was	not	a	reference	level	setting	exercise.	We	do	not	conduct	
the	method	to	the	level	of	detail	that	would	be	expected	for	a	VCS	Project	Description	(PD)	
document,	since	that	would	require	local	field	data	on	biomass	and	local	improvement	of	
GIS	data	used	in	models.	Nonetheless	we	follow	the	overall	logic	of	the	VCS	methodologies	
and	their	fundamental	steps	in	spatial	modeling.	

5.1.2.	Definition	of	extents	

First,	some	spatial	extents	are	defined.	This	includes	the	site	itself,	which	in	each	of	
the	seven	cases	is	an	existing	protected	area	(PA).	Each	PA	is	one	of	Mexico’s	REDD+	early	
action	sites	(Áreas	de	Áccion	Temprana	REDD+;	AATR).	We	used	the	official	PA	boundary	
files	provided	to	us	by	TNC.	Second	is	the	definition	of	a	reference	area	for	modeling	land	
use	inside	and	around	each	site.		

Each	reference	area	was	defined	by	first	creating	a	50	km	buffer	around	the	AATR	
site.		This	buffer	was	combined	with	municipality	boundaries,	and	the	entire	extent	of	any	
municipality	that	intersected	the	buffer	was	included	in	the	reference	region.			

5.2.	Data	and	Methods	

5.2.1.	Deforestation	data	

Within	each	site’s	reference	area,	we	obtained	data	on	forest	cover	and	
deforestation	from	2000	to	2012.	We	used	the	same	data	that	were	used	for	the	national‐
level	analyses	from	the	latest	University	of	Maryland	(UMD)	assessment.	Correspondingly,	
these	data	are	based	on	the	analysis	of	Landsat	images	and	have	a	spatial	resolution	of	
30m.	However,	we	did	not	conduct	any	spatial	degradation	(coarsening	of	spatial	
resolution),	as	was	done	for	the	national‐level	analyses,	since	each	reference	is	not	
prohibitively	large	to	conduct	analyses	at	full	resolution.		
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The	UMD	source	data	can	be	seen	as	composed	of	two	parts.	First	is	a	map	of	tree‐
cover	percent	for	each	30m	cell	in	year	2000.	Tree	cover	is	not	the	same	as	forest	cover.	
One	can	assume	that	tree	cover	as	presented	in	this	product	is	related	to	crown	cover	as	
estimated	in	the	field	and	used	in	national	definitions.	However,	the	two	concepts	are	not	
the	exact	same,	and	such	an	assumption	can	lead	to	problems.	For	both	the	national	and	
local‐level	modeling	we	used	this	assumption	for	simplicity.		

The	national	definition	of	forest	has,	as	criteria,	a	minimum	crown‐cover	of	25	
percent.	We	applied	this	value	as	a	threshold	to	the	percent	tree‐cover	map	from	UMD	to	
create	a	map	of	forest	in	2000.	This	leads	to	a	generous	estimate	of	the	distribution	of	
forest	in	the	modeling	areas.	We	believe	that	most	secondary	forest	fallows	and	shrub	
fallows	associated	with	rotational	agriculture	or	recently‐abandoned	farm	land	is	included	
in	the	estimation	of	forest	extent	in	2000.	The	mapped	and	modeled	patterns	of	forest	
cover	and	deforestation	likely	include	sites	with	significant	tree	cover	and	areas	of	
clearance	of	tree	cover	that	are	not	mature	forest	or	the	clearance	of	“mature”	forest.	We	
believe	that	plantations	and	selectively‐logged	forest	are	also	included	in	the	forest	class.	
Thus	this	definition	should	be	kept	in	mind	when	interpreting	results	of	this	study.	

The	second	part	of	the	UMD	data	focuses	on	estimates	of	the	locations	of	loss	of	
tree	cover	for	each	year	from	2001	to	2012.	We	believe	that	these	should	be	robust	data,	
since	the	temporal‐spectral	signal	of	such	clearing	events	is	strong,	and	the	methods	of	
UMD	maximize	the	potential	for	their	detection	by	mining	the	entire	Landsat	archive	over	
the	study	period	and	employ	an	effective	decision‐tree	statistical	approach.	Thus,	we	
expect	that	the	majority	of	deforestation	is	captured,	as	well	as	much	of	the	other	forms	of	
clearance	of	tree	cover,	because	of	the	generous	definition	of	forest	extent	in	2000,	as	
noted	above.		

In	contrast	to	the	national	analysis	that	considered	forest	losses	on	an	annual	basis,	
for	the	local	analyses,	the	annual	loss	data	were	grouped	to	create	maps	of	forest	loss	over	
two	time	periods:	2000	to	2006	and	2007	to	2012.	We	then	combined	the	maps	of	loss	for	
these	two	periods	with	that	of	derived	forest	extent	in	2000	to	create	a	three‐date	product.	
In	an	effort	to	limit	the	effect	of	small‐scale	changes	in	tree	cover	that	might	not	truly	
represent	forest	losses,	we	filtered	the	output	to	minimize	very	small	artifacts	and	to	set	a	
minimum	patch	size	for	both	the	baseline	forest	distribution	and	patterns	of	loss.	First,	a	
three‐by‐three	cell	majority	filter	was	applied	to	the	merged	product.	Second,	we	filtered	
the	output	using	a	one‐hectare	sieve.	This	eliminates	any	patch	of	forest	or	forest	loss	that	
is	smaller	than	one	hectare	and	replaces	the	cells	with	the	dominant	class	bordering	the	
eliminated	patch	of	cells.	10		

																																																													
10	We	believed	this	filtering	was	prudent	in	the	local	analyses,	but	not	necessary	in	the	national	
analysis,	as	the	latter	controlled	for	starting	forest	area	in	the	econometric	procedure.		In	addition,	
the	much	larger	amount	of	data	used	for	the	national	study	reduces	the	potential	influence	of	
spurious	forest	loss	observations.		
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5.2.2.	Other	data	

We	obtained	a	suite	of	data	from	TNC	and	partners	to	explore	the	spatial	relationships	
between	possible	“drivers”	and	deforestation.	The	data	are	more	accurately	described	as	
geographical	parameters	rather	than	drivers.	These	parameters	are	indicative	of	where	the	
drivers	occur	and	are	most	likely	to	be	linked	to	deforestation	patterns.	For	example,	roads	
themselves	are	not	drivers,	but	their	distribution	indicates	where	people	have	easier	
access	to	forests	and	can	rapidly	move	to	their	homes	or	markets.	Thus,	roads	are	a	
geographical	parameter	that	allows	us	to	understand	where	the	interactions	among	
people,	forests	and	markets	occur,	and	they	thus	typically	are	valuable	in	predicting	where	
deforestation	will	most	likely	occur.	However,	the	term	“driver”	is	commonly	used	in	such	
modeling	contexts	to	refer	to	data	on	such	geographical	parameters,	and	we	will	do	so	here	
for	simplicity.		

The	spatial	data	on	drivers	we	obtained	are	of	three	data	types.	First	type	is	raster	
data	on	continuous	variables,	such	as	distance	to	roads	and	elevation.	The	second	type	is	
polygon	data	that	were	used	as	class	variables.	These	include	soil	type,	community,	etc.	
The	third	type	is	a	dataset	created	specifically	for	this	modeling	exercise.	To	represent	how	
“marginal”	a	community	is,	i.e.	how	isolated	and	lacking	in	resources	and/or	subsidies,	we	
assigned	a	three‐class	variable	based	on	a	“marginalization”	index	to	a	map	of	locations	of	
community	centers.	We	then	created	a	map	of	distance	to	each	class	of	community.		

All	of	these	data	were	rasterized	and	created	or	resampled	to	match	the	30m	cell	
array	of	the	deforestation	map.	The	full	list	of	potential	driver	data	to	use	in	the	local	
models	is	reported	in	Table	5.2.1.	
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Table	5.2.1.	Driver	independent	variables	used	for	spatial	models	at	the	local	level.		
Variable	
label	

Variable	name	 Data	source	 Notes	

Var	1	 var_dist_hi_marginalized_villages	 Conabio	 The	marginalization	index	
is	a	summary	for	
differentiating	census	
towns	in	the	country,	
according	to	the	global	
impact	of	deficiencies	that	
affect	the	population	as	a	
result	of	lack	of	access	to	
education,	residence	in	
inadequate	housing	and	
lack	of	assets.	

Var	2	 var_dist_low_margin_villages	 Conabio	

Var	3	 var_dist_medium_margin_villages	 Conabio	

Var	4	 var_dist_primary_road	 Conabio

Var	5	 var_dist_railroad	 Conabio

Var	6	 var_dist_rivers	 Conabio

Var	7	 var_dist_secondary_road Conabio

Var	8	 var_dist_small_medium_cities	 Conabio	
Regionally	important	
urban	centers,	including	
state	capitals	

Var	9	 var_dist_trail	 Conabio

Var	10	 var_elev_30_30m	 INEGI	 Original	resolution	of	60	
meters	

Var	11	 var_slope_30m	 INEGI	 Derived	from	the	digital	
elevation	model	(DEM)	

Var	12	 var_pop_dens	

Global	Rural	
Urban	
Mapping	
Project	
(GRUMP)	

This	variable	was	not	
inlcuded	in	the	Sierra	
Ramaruri	model	

Var	13	 var_protected_areas_dummy	 Conabio	 Presence	or	absence	of	
Federal	protected	areas	

Var	14	 var_dist_non_forest_2006	
UMD/Hansen	
data	

Derived	from	the	input	LC	
maps	

Var	15	 var_dist_megacities	 Conabio	

This	variable	was	not	
included	in	models	for	
AATRs	without	a	megacity	
(population	GT	75,000)	
within	the	reference	region	
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5.2.3.Spatial	modeling	

We	used	the	IDRISI	Land	Change	Modeler	tool	(LCM)	for	all	spatial	modeling	at	the	
local	level.		This	is	developed	by	Clark	Labs	and	one	of	the	stronger	modeling	tools	
available	for	land‐use	modeling.	Documentation	on	the	tool	and	terms	used	in	this	
description	can	be	found	at:	http://www.clarklabs.org/products/Land‐Change‐Modeling‐
IDRISI.cfm.			

The	yearly	deforestation	data	from	2001	to	2012	were	grouped	into	three	dates	
and	two	time	periods:	2001‐2005‐2012.		The	first	time	period	is	used	to	calibrate	each	
local	model.		The	calibrated	model	is	then	used	to	predict	deforestation	over	the	following	
time	period.		Since	data	on	actual	observations	of	deforestation	for	the	latter	period	exist,	a	
validation	of	the	model	is	possible	by	comparing	the	modeled	to	actual	patterns	of	
deforestation.	

For	class	variables,	we	created	“evidence	likelihood”	maps	for	input	into	models.		
These	assign	the	proportional	importance	of	a	particular	polygon	to	the	study	area’s	
overall	deforestation	rate.		This	is	then	used	as	a	potential	weighting	factor	in	the	modeling	
algorithm.		

The	LCM	tool	and	methods	approved	by	the	VCS	compare	the	spatial	patterns	of	
driver	variables	with	those	of	historical	deforestation.	Statistical	relationships	are	then	
used	to	produce	estimates	of	the	“potential”	for	deforestation	in	each	model	cell.		These	
values	of	potential	could	be	re‐scaled	to	be	values	of	likelihood,	where	their	sum	equals	a	
defined	total	rate	for	the	modeled	period.		If	this	is	done,	then	the	output	would	be	similar	
to	the	national	model	in	that	cells	are	assigned	a	continuous	value.		The	likelihood	values,	
ranging	from	zero	to	one,	could	be	used	as	if	they	were	estimates	of	the	proportion	of	the	
cell	that	is	deforested.		This	could	be	called	a	“continuous”	approach.		

Another	approach	is	to	assign	complete	deforestation	to	the	cells	with	the	highest	
values	of	potential,	which	could	be	called	a	“discrete”	approach.		This	produces	a	map	
where	cells	are	either	deforested	or	not.		This	assumes	that	deforestation	entirely	occurs	in	
the	sites	of	greatest	potential	or	risk.			While	this	could	be	argued	a	realistic	approach,	
there	are	problems	with	its	assumptions,	i.e.	that	there	is	no	finer	scale	variation	in	risk	
due	to	unobservable	real‐world	factors.			Thus,	high	risk	sites	are	fully	deforested	and	zero	
deforestation	happens	in	all	places	other	than	the	strictly	most	threatened	sites.			
Regardless,	the	methods	approved	by	VCS	all	require	this	discrete	approach,	and	this	is	the	
approach	that	we	applied	in	the	local	models.		We	do,	however,	maintain	the	continuous	
data	on	deforestation	potential,	and	further	study	could	explore	the	differences	between	
the	results	of	the	two	approaches.		

The	approach	of	this	tool,	and	of	most	others	used	in	such	applications,	is	to	
calibrate	with	a	subset	of	the	data,	whether	selecting	a	particular	time	period	or	spatial	
subset,	then	to	run	the	model	and	validate	it	with	a	later	time	period	or	separate	spatial	
subset.		We	used	one	time	period	in	order	to	allow	the	option	of	validation	over	the	second	
time	period.		Different	algorithms	for	modeling	the	relationships	between	drivers	and	
deforestation	exist.		We	selected	the	Multi‐Layered	Perceptron	(MLP)	algorithm	within	
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IDRISI’s	LCM	because	of	its	efficiency	and	relatively	strong	performance	compared	to	other	
algorithms,	such	as	multiple	regression,	etc.		(Eastman,	2005).		The	MLP	is	a	form	of	a	
neural	network	that	can	take	continuous	and	class	variables	as	inputs	and	is	not	dependent	
on	assumptions	of	normal	data	distributions.		

We	ran	multiple	models	for	each	study	area	to	get	a	general	sense	of	performance	
and	impacts	of	different	type	of	data	on	drivers.	We	tried	excluding	different	individual	
drivers	or	sets	of	drivers.		Among	the	seven	sites,	we	found	that	the	data	in	the	form	of	
polygons	almost	always	led	to	results	with	conspicuous	artifacts.		These	were	both	in	the	
form	of	sharp	changes	in	the	values	of	potential	along	boundaries	of	polygons.	Also,	subtle	
differences	among	polygons	had	exaggerated	impacts	on	the	resulting	discrete	maps	of	
predicted	deforestation.	I	n	general,	we	found	that	the	model,	especially	the	discrete	
predictions	of	locations	of	deforestation,	were	highly	sensitive	to	the	class	variables.	
Because	of	this,	our	final	models	excluded	all	polygon‐type	class	variables	other	than	
protected	areas.		The	latter	was	kept	since	this	data	layer	yielded	realistic	impacts	on	
outputs,	considering	the	trends	in	deforestation	rates	in	protected	versus	non‐protected	
land	evidenced	by	the	historical	deforestation	maps.		As	a	result,	the	most	important	socio‐
economic	parameter	used	as	an	input	to	the	final	models	is	the	distance	to	communities	
stratified	by	level	of	marginalization.	

With	the	selection	of	final	models,	we	have	outputs	of	estimates	of	the	potential	for	
deforestation.		To	create	maps	of	discrete	locations	of	predicted	deforestation,	we	required	
a	source	for	the	total	rate	of	each	reference	area.		We	used	the	rates	derived	from	the	
national	models	within	each	reference	area.		The	rate	for	the	reference	region	is	then	
applied	to	the	value	of	potential	generated	by	the	LCM	model,	assigning	deforestation	to	
the	highest	potential	cells	until	the	total	change	area	obtained	from	the	national	model	is	
reached.		We	did	this	for	three	different	scenarios:	the	alternative	(Poisson)	regression	
model	of	the	“business‐as‐usual”	or	non‐REDD+	scenario	(Alternative	BAU),	the	rate	from	
the	preferred	(negative‐binomial)	model	of	the	non‐REDD+	scenario	(Preferred	BAU),	and	
the	rate	from	the	preferred	model	of	the	REDD+	scenario	(Preferred	BAU).		Models	were	
run	to	simulate	deforestation	from	2012	through	2022	and	outputs	were	tabulated	for	
each	site	and	each	reference	area.	

5.3.	Results	

5.3.1.	Deforestation	since	2000	

Deforestation,	as	defined	by	a	25%	threshold	applied	to	the	UMD	forest	cover	in	
2000	and	yearly	tree	cover	loss	since	then,	has	been	significant	in	most	sites,	especially	the	
Yucatán	site.		Forest	cover	in	2000	and	aggregated	deforestation	from	2000	to	2012	are	
reported	in	Table	4.2.		Annualized	rates	are	highly	variable	among	sites.		Two	sites,	
Comunidades	Forestales	de	Oaxaca	Mixteca	and	Sierra	Raramuri,	have	rates	near	zero.		
Two	other	sites,	Comunidades	Forestales	de	Oaxaca	Istmo	and	Sierra	Pucc	los	Chenes	have	
relatively	high	rates	that	in	areas	approach	0.5	percent	per	year.	In	most	cases	ejidos	had	
higher	deforestation	rates	than	the	rest	of	the	local	reference	area,	however	in	Sierra	
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Rairumi	protected	areas	category	had	the	highest	rate,	and	in	sierra	Pucc	los	Chenes	the	
AATR	had	the	highest	rate.	

Patterns	of	historical	deforestation	are	shown	in	Maps	A‐25	through	A‐31	in	the	
Appendix.	In	all	the	figures,	forest	cover	is	defined	by	a	25%	threshold	applied	to	the	
Hansen,	et	al.	(2014)	data,	and	deforestation	is	a	sum	of	all	loss	data	within	that	defined	
forest	area.	

Table	5.3.1.	Summary	of	forest	cover	in	2000	and	deforestation	from	2000	to	2012	
among	AATRs.		

Total	land	
area	(ha)	

Forest	
area,	

2000	(ha)	

Forested	
fraction	
(2000)	

Forest	
area,	

2012	(ha)	

Defor		

00‐12	
(ha/yr)	

Defor

00‐12	
(%/yr)	

Comunidades	Forestales	de	Oaxaca	Istmo	

AATR	site	 265,382	 213,844	 0.81	 206,217	 636	 0.30%	

Land‐use:	Ejidos	 784,033	 383,469	 0.49	 362,324	 1,762	 0.46%	
Land‐use:	
Comunidades	 1,755,724	 1,334,791	 0.76	 1,308,087	 2,225	 0.17%	
Land‐use:	Protected	
Areas	(federal)	 na	 na	 na	 na	 na	 na	
Comunidades_	Forestales	de	Oaxaca	Mixteca	

AATR	site	 471,624	 203,659	 0.43	 203,555	 9	 0.00%	

Land‐use:	Ejidos	 1,090,966	 418,825	 0.38	 415,866	 247	 0.06%	
Land‐use:	
Comunidades	 2,696,932	 1,148,990	 0.43	 1,145,713	 273	 0.02%	
Land‐use:	Protected	
Areas	(federal)	 435,452	 67,044	 0.15	 67,021	 2	 0.00%	

Comunidades	Forestales	de	Oaxaca	Sierra	Norte	

AATR	site	 417,588	 386,522	 0.93	 383,997	 210	 0.05%	

Land‐use:	Ejidos	 903,043	 402,775	 0.45	 389,478	 1,108	 0.28%	
Land‐use:	
Comunidades	 1,932,267	 1,253,583	 0.65	 1,237,395	 1,349	 0.11%	
Land‐use:	Protected	
Areas	(federal)	 187,212	 55,597	 0.30	 55,456	 12	 0.02%	
Cuencas	Interiores	de	la	Sierra	de	Chiapas	

Reference	region	 4,897,982	 3,014,625	 0.62	 2,966,421	 4,017	 0.13%	

AATR	site	 1,058,629	 611,574	 0.58	 606,088	 457	 0.07%	

Land‐use:	Ejidos	 1,975,301	 1,174,757	 0.59	 1,157,540	 1,435	 0.12%	
Land‐use:	
Comunidades	 775,639	 637,955	 0.82	 630,996	 580	 0.09%	
Land‐use:	Protected	
Areas	(federal)	 639,767	 526,698	 0.82	 523,044	 304	 0.06%	
Cutzamala	Valle	de	Bravo	

Reference	region	 3,008,360	 1,011,168	 0.34	 1,007,582	 299	 0.03%	

AATR	site	 263,333	 117,204	 0.45	 116,480	 60	 0.05%	

Land‐use:	Ejidos	 1,219,455	 320,089	 0.26	 319,202	 74	 0.02%	
Land‐use:	
Comunidades	 229,479	 111,390	 0.49	 110,940	 38	 0.03%	
Land‐use:	Protected	
Areas	(federal)	 273,411	 151,909	 0.56	 150,921	 82	 0.05%	
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Sierra	Pucc	Los	Chenes	

AATR	site	 1,535	 1,429	 0.93	 1,332	 8	 0.57%	

Land‐use:	Ejidos	 7,109	 6,480	 0.91	 6,091	 32	 0.50%	
Land‐use:	
Comunidades	 1	 1	 0.59	 1	 0	 0.55%	
Land‐use:	Protected	
Areas	(federal)	 1,608	 1,252	 0.78	 1,241	 1	 0.08%	

Sierra	Raramuri	

AATR	site	 1,883,875	 984,941	 0.52	 984,242	 58	 0.01%	

Land‐use:	Ejidos	 5,933,054	 2,783,030	 0.47	 2,776,926	 509	 0.02%	
Land‐use:	
Comunidades	 1,560,860	 871,818	 0.56	 870,021	 150	 0.02%	

Land‐use:	Protected	
Areas	(federal)	 70,206	 47,239	 0.67	 46,935	 25	 0.05%	

Note:	Forest	cover	is	defined	by	a	25%	threshold	applied	to	the	Hansen,	et	al	(2014)	data,	and	
deforestation	is	a	sum	of	all	loss	data	within	that	defined	forest	area.		Note	that	deforestation	values	
differ	from	those	in	the	global	analysis	since	the	historical‐deforestation	maps	were	filtered	for	the	
local	analysis.	The	filtering	removed	any	patches	of	forest,	non‐forest	or	deforestation	for	a	given	
time	period	smaller	than	one	hectare.	

5.3.2.Modeled	deforestation	beyond	2012	

We	ran	multiple	models	with	different	combinations	of	driver	variables.		Among	
these,	the	generally	consistent	result	was	that	the	best	performing	models	were	the	ones	
using	all	15	input	variables.		Also,	we	found	that	the	inclusion	of	distance	to	a	non‐forested	
edge	did	not	improve	models.		This	parameter	tended	to	lead	to	an	over‐fitting	of	
deforestation	along	existing	edges,	and	exclusion	of	this	parameter	did	not	result	in	un‐
realistically	remote	deforestation	in	the	model	outputs.			

Thus,	our	final	models	all	were	based	on	the	MLP	models	using	all	inputs	except	
distance	to	a	non‐forested	edge.		Finally,	MLP	randomly	selects	“seed	cells”	to	begin	model	
calibration,	and	model	outputs	may	vary	modestly	in	a	random	manner	depending	on	the	
selection	of	these	seeds.		Thus,	we	report	two	model	iterations	for	each	final	model.	We	
applied	the	sensitivity	analysis	included	in	IDRISI’s	MLP	tool	to	estimate	the	relative	
importance	of	different	input	variables.		Importance	values	are	reported	in	Table	5.3.2.	

Input	variables	most	important	to	the	model	varied	among	the	study	areas.	
Distance	to	mega‐cities	was	highly	important	for	the	study	areas	where	they	occurred,	
Cutzamala	Valle	de	Bravo	and	Sierra	Raramuri.		For	regions	that	are	exemplary	of	frontier	
areas,	accessibility,	i.e.	distance	to	roads,	trails	and	rivers,	was	most	important.		For	regions	
that	are	exemplary	of	heavily‐fragmented	forest,	biophysical	variables,	e.g.	slope,	were	
most	important.		There	was	overall	no	consistent	trend	on	the	importance	of	the	variable	
distance	to	highly‐marginalized	villages.		In	some	areas	sites	near	highly‐marginalized	
villages	had	higher	deforestation	rates	while	in	other	areas	the	trend	was	reversed.		In	all	
but	one	study	area,	including	distance	to	non‐forest	land	increased	model	skill.		Only	
Cutzamala	Valle	de	Bravo,	which	is	highly	fragmented	forest,	didn’t	have	this	effect.	
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Table	5.3.2.	Relative	importance	of	the	different	driver	variables	for	models	run	in	each	of	the	local	study	areas.	See	Table	5.3.1	for	
the	list	of	variables.	

Region	
Model	
Run	

var1	 var2	 var3	 var4	 var5	 var6	 var7	 var8	 var9	 var10	 var11	 var12	 	 var13	 var14	 var15	

Skill	Dist.	hi	
margin
alized	
villages	

Dist.	
low	
margin.
villages	

Dist.	
medium	
margin.	
villages	

Dist	
primar
y	road	

Dist.	
railroa
d	

Dist.	
rivers	

Dist.	
Second
ary	
road	

Dist.	
small/	
medium	
cities	

Dist.	
trail	

Elev		30	
30m	

Slope	
30m	

Pop	
density	

Protect
ed	
areas	
dummy	

Dist	
nonfor
est:	
2006	

Dist	
Megacit
ies	

Comunida
des	
Forestales	
de	Oaxaca	
(Istmo)	

MLP	run	1	 12	 8	 5	 10	 1	 13	 2	 3	 9	 4	 7	 11	 	 n/a	 6	 n/a	 0.4935	

MLP	run	2	 11	 7	 13	 4	 3	 8	 6	 1	 9	 12	 5	 10	 	 n/a	 2	 n/a	 0.5348	

MLP	run	
w/o	dist.	to	
non‐forest	

8	 10	 5	 9	 2	 11	 3	 1	 6	 4	 7	 12	
	

n/a	 n/a	 n/a	 0.4931	

Comunida
des	
Forestales	
de	Oaxaca	
(Mixteca)	

MLP	run	1	 11	 4	 13	 8	 5	 14	 7	 3	 2	 1	 12	 10	 	 12	 9	 n/a	 0.7419	

MLP	run	2	 13	 4	 10	 11	 5	 9	 7	 2	 3	 1	 14	 12	 	 14	 8	 n/a	 0.7405	

MLP	run	
without	
distance	to	
non‐forest	

11	 4	 12	 8	 6	 7	 13	 2	 3	 1	 10	 9	

	

10	 n/a	 n/a	 0.6802	

Comunida
des	
Forestales	
de	Oaxaca	
(Sierra	
Norte)	

MLP	run	1	
14	 6	 7	 2	 5	 13	 11	 5	 10	 1	 3	 8	

	
12	 4	 n/a	 0.5593	

MLP	run	2	 14	 5	 13	 2	 5	 12	 8	 6	 10	 4	 3	 7	 	 9	 1	 n/a	 0.5958	

MLP	run	
w/o	dist.	to	
non‐forest	

13	 5	 4	 3	 6	 7	 11	 8	 12	 1	 2	 10	
	

9	 n/a	 n/a	 0.5351	

Cuencas	
Interiores	
de	la	
Sierra	de	
Chiapas	

MLP	run	1	 13	 5	 9	 6	 3	 10	 12	 4	 11	 2	 1	 13	 	 7	 8	 n/a	 0.4124	

MLP	run	2	 11	 14	 7	 10	 6	 13	 8	 4	 12	 2	 1	 9	 	 3	 5	 n/a	 0.4504	

MLP	run	
w/o	dist.	to	
non‐forest	

12	 4	 8	 5	 3	 13	 10	 6	 9	 2	 1	 11	
	

7	 n/a	 n/a	 0.4006	

Cutzamala	
Valle	de	
Bravo	

MLP	run	1	 8	 6	 10	 9	 12	 7	 3	 4	 15	 2	 13	 14	 	 5	 11	 1	 0.6282	

MLP	run	2	 6	 5	 15	 10	 13	 8	 3	 4	 14	 2	 11	 12	 	 9	 7	 1	 0.677	

MLP	run	
w/o	dist.	to	
non‐forest	

9	 7	 11	 6	 10	 8	 2	 5	 13	 4	 12	 14	
	

3	 n/a	 1	 0.71	
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Sierra	
Pucc	Los	
Chenes	

MLP	run	1	 9	 11	 10	 4	 2	 12	 8	 3	 7	 14	 6	 5	 	 13	 1	 n/a	 0.5661	

MLP	run	2	 9	 2	 14	 3	 11	 4	 5	 5	 10	 12	 7	 6	 	 13	 1	 n/a	 0.5715	

MLP	run	
w/o	dist.	to	
non‐forest	

6	 2	 1	 8	 5	 3	 13	 7	 9	 4	 12	 11	
	

10	 n/a	 n/a	 0.3906	

Sierra	
Raramuri	

MLP	run	1	 13	 12	 5	 14	 6	 8	 7	 2	 9	 1	 4	 n/a	 	 11	 10	 3	 0.6178	

MLP	run	2	 14	 12	 5	 13	 9	 8	 11	 2	 7	 1	 4	 n/a	 	 10	 6	 3	 0.6115	

MLP	run	
w/o	dist.	to	
non‐forest	

11	 10	 6	 7	 8	 9	 5	 3	 12	 1	 4	 n/a	
	

13	 n/a	 2	 0.6224	

Note:	Low	numerical	values	indicate	higher	importance	levels,	i.e.	these	are	rank	scores.		The	most	important	three	variables	for	each	model	are	highlighted	
in	yellow.	
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5.4.	Predicting	deforestation	in	the	future:	

The	patterns	of	potential	for	deforestation	varied	among	the	sites,	although	are	
understandable	given	the	differing	importance	of	driver	variables	in	the	different	study	areas.		It	is	
thus	useful	to	refer	to	Table	5.3.2	when	interpreting	the	patterns	of	potential.		Maps	of	potential	
deforestation	or	“soft”	deforestation	transition	potential	are	shown	in	the	maps	in	figures	5.4.1b‐
5.4.7b	below.			One	also	sees	that	there	is	more	information	in	these	maps	than	the	hard	
classifications	shown	above	each	map	(5.4.1a‐5.4.7a),	and	one	can	interpret	the	patterns	of	relative	
potential	beyond	considering	only	the	sites	of	strictly	greatest	potential,	as	is	the	case	in	the	hard	
classifications	presented	later	in	this	section.		

The	hard	classification	of	future	deforestation	for	each	AATR	was	based	on	the	transition	
potential	surfaces	created	combined	with	the	total	rates	for	each	reference	region	according	the	the	
different	scenarios	of	the	national	models.		These	hard	deforestation	predictions	are	shown	in	maps	
in	5.4.1a‐5.4.7a.		The	transition	potential	chosen	for	the	final	prediction	were	based	on	the	models	
with	the	highest	skill	measure	(shown	in	table	5.3.2).		The	rates	of	transition	that	were	applied	to	
the	transition	potential	surfaces	are	shown	below	in	Table	5.4.1,	as	well	as	the	total	amount	of	
deforestation	predicted	for	each	reference	region	and	AATR	site.		The	quantity	of	deforestation	
predicted	within	each	reference	regions	was	based	on	the	input	rates	shown	below,	and	the	
allocation	of	the	deforestation	was	determined	by	selecting	the	forest	cells	with	the	highest	values	
in	the	transition	potential	surfaces	created	in	LCM.		This	method	for	deforestation	allocation	has	the	
advantage	of	being	able	to	create	thematic	land‐cover	maps	at	the	native	resolution	of	the	input	
dataset,	however	it	also	assumes	that	deforesting	agent	know	which	pixels	are	optimal	for	
deforestation	and	therefore	only	the	most	highly	vulnerable	pixels	will	be	transitioned.	

Rates	for	transition	were	derived	from	both	the	observed	historical	rate	in	the	LCM	model	
and	the	modeled	national	rates	from	the	national	model.		The	transitions	shown	represent	the	total	
transitions	from	2012	to	2022,	and	in	the	case	of	the	national	models,	we	present	results	for	both	a	
business	as	usual	scenario	(BAU)	and	REDD+	scenario	assuming	a	$10/tC	price.		The	historical	rate	
from		derived	from	2000‐2012	is	also	show	and	projected	linearly	to	2022,	however,	one	should	
note	that	the	historical	rate	cannot	be	directly	compared	with	the	modeled	rates	from	the	national	
model	due	in	part	to	the	filtering	process	that	was	used	on	the	forest	cover	and	deforestation	data	
from	Hansen	et	al.	2013.	Therefore	the	historical	rate	is	consistently	lower	than	the	BAU	scenarios.		
The	historical	rates	also	do	not	take	into	account	larger	national	trend	which	would	have	an	effect	
on	both	the	modeled	rates	and	the	future	rates	(see	table	4.4.1).		Therefore	the	historical	rates	are	
provided	as	context	on	how	much	deforestation	might	be	predicted	without	the	use	of	an	external	
model,	using	the	most	simplistic	approach.		A	more	useful	comparison	for	understanding	the	effect	
of	national	policy	on	the	local	models	is	the	difference	between	the	preferred	(Negative	Binomial)	
BAU	scenario	and	the	preferred	(Negative	Binomial)	REDD	scenario.		Comparing	the	two	negative	
binomial	scenarios	shows	that	at	the	reference	region	scale	there	were	decreases	between	23	–	
58%,	which	is	consistent	with	the	national	level	predictions	shown	in	Table	4.4.3.			

At	the	AATR	site	scale	the	range	is	much	more	variation	in	the	amount	of	deforestation	
predicted	between	2012	and	2022.		In	the	case	of	two	AATR	sites,	Oaxaca	Mixteca	and	Sierra	
Raramuri,	there	was	no	deforestation	predicted	within	the	site,	regardless	of	the	scenario.	The	
reason	that	this	was	the	case	is	due	to	the	method	which	was	used	to	assign	change.		As	described	
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above,	because	only	the	highest	ranked	pixels	are	transitioned	and	these	sites	have	very	low	
deforestation	rates	(ranging	from	0.23%	–	2.12%	over	the	10	year	period).			Similarly,	the	
extremely	high	reduction	in	deforestation	in	the	Oaxaca	Sierra	Norte	AATR	site	can	also	be	
attributed	to	the	method	of	allocation.		In	the	case	of	these	three	AATR	sites,	REDD+	initiatives	
would	have	a	minimal	effect	because	the	baseline	rates	under	all	scenarios	are	very	low.			The	
remaining	four	AATR	sites	observed	a	reduction	in	deforestation	ranging	from	20%	‐	67%,	and	in	
most	cases	these	reductions	were	similar	to	those	experience	within	the	reference	regions.		

The	hard	classifications	of	predicted	deforestation	indicate	different	conclusions	among	the	
different	study	areas	(Table	5.4.1).		For	example,	for	three	study	areas,	Mixteca,	Chiapas	and	
Raramuri,	both	BAU	models	predicted	rates	of	deforestation	of	over	twice	the	historical	rates.	The	
remaining	sites	had	predicted	rates	of	within	50	percent	of	the	historical	rates.		In	almost	all	cases,	
modeled	future	rates	for	the	BAU	scenarios	were	greater	than	historical	rates.	Most	of	the	predicted	
rates	for	the	study	areas	were	similar	for	both	BAU	models,	although	Chiapas	and	Valle	Bravo	
models	did	produce	quite	different	total	rates.		

One	result	common	to	all	study	areas	was	that	the	REDD	scenario	yielded	lower	rates	than	
both	BAU	scenarios.	This	difference	was	up	to	two‐fold	for	four	of	the	seven	areas.	Valle	Bravo	had	
the	smallest	difference,	and	actually	had	a	rate	for	the	Poisson	BAU	scenario	slightly	lower	than	the	
REDD	scenario.	Likewise,	in	most	cases	the	rates	within	the	AATR	sites	were	lower	in	the	REDD	
scenario	than	in	either	BAU	scenario.	In	Chiapas	the	REDD‐scenario	rate	was	close	to	the	Poisson	
BAU	rate	and	in	Valle	Bravo	the	REDD	rate	was	slightly	higher	than	the	Poisson	BAU	rate.	However,	
it	is	safest	to	compare	the	REDD	scenario,	based	on	the	negative‐binary	model,	with	the	similarly‐
modeled	BAU	scenario.	For	these,	all	REDD	scenarios’	rates	were	lower	than	those	of	the	BAU	
scenarios,	the	percent	reductions	reported	in	the	last	column	in	Table	5.4.1.	This	is	excluding	the	
two	cases	with	near‐zero	rates	in	any	scenario	within	the	AATR	site,	Mixteca	and	Raramuri.	

Figures	5.4.1a‐5.4.7.a	show	the	patterns	of	deforestation	from	the	hard	classifications	of	the	
predictions.		In	these	figures,	red	areas	are	places	where	the	BAU	model	predicts	deforestation	
while	the	REDD	model	does	not;	blue	areas	are	where	both	models	predict	deforestation.		

	Two	sites	had	close	to	zero	historical	deforestation	and	no	deforestation	in	modeled	
scenarios,	Mixteca	and	Raramuri.	Oaxaca	Sierra	Norte	and	Sierra	Chiapas	do	have	deforestation	that	
enters	the	AATR	sites	in	both	scenarios	modeled,	however	the	pattern	is	very	disperse.	At	the	scale	
of	presentation	in	this	report,	these	relatively	small	patches	of	deforestation	do	not	appear.	
However,	exploration	of	the	full‐resolution	digital	raster	files	of	the	model	outputs	will	show	
deforestation	inside	these	sites,	especially	in	the	lower	valleys.	The	pattern	of	modeled	
deforestation	in	Cutzmala	Valle	Bravo	is	rather	unique.	All	of	the	deforestation	in	the	site	is	
concentrated	in	one	large	patch.	This	pattern	is	suspicious,	and	of	all	the	spatial	models	in	this	
study,	this	one	appears	the	most	suspect	and	worthy	of	re‐assessment.		

The	models	for	both	the	BAU	and	REDD	scenarios	for	Oaxaca	Istmo	and	Pucc	predict	
relatively	high	rates	of	deforestation	inside	the	AATR	sites.	In	Oaxaca	Istmo,	this	is	almost	entirely	
in	the	north‐east	of	the	site,	from	where	the	roads	provide	accessibility	and	the	elevation	nois	
favourable.	In	Pucc	the	predicted	deforestation	in	both	scenarios	is	greatest	among	all	AATR	sites.	
Predicted	deforestation	is	also	very	well	distributed	thoughout	the	site.	These	sites	stand	out	
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among	the	group	both	in	terms	of	BAU	deforestation	and	the	potential	for	reductions	in	
deforestation	under	REDD.				

Table	5.4.1.	Predicted	deforestation	from	2012‐2022	

	

Deforestation	per	scenario	2012‐2022	 Decrease	in	
deforestation	
between	
BAU	and	
REDD	(%)	

Historical	

Rate*	

Alternative	

(BAU)	

12‐24	

Preferred	
(BAU)	

12‐24	

Preferred	
(REDD)	
12‐24	

AATR_RT	1	‐	Mixteca	
	

Reference	region	 0.36%	 2.10%	 2.12%	 0.98%	
	

Gross	Deforestation	per	RR,	2012‐2022	(ha)	 6,672	 38,779	 39,138	 18,132	 54%	

Gross	Deforestation	in	the	site,	2012‐2022	(ha)	 ‐	 ‐	 ‐	 ‐	 0%	

AATR_RT	2	‐	Sierra	Norte	
	

Reference	region	 1.83%	 1.94%	 1.72%	 0.72%	
	

Gross	Deforestation	per	RR,	2012‐2022	(ha)	 42,428	 44,938	 39,787	 16,699	 58%	

Gross	Deforestation	in	the	site,	2012‐2022	(ha)	 226	 269	 180	 3	 98%	

AATR_RT	3	‐	Sierra	Pucc	
	

Reference	region	 5.78%	 8.50%	 7.63%	 5.01%	
	

Gross	Deforestation	per	RR,	2012‐2022	(ha)	 448,446	 659,371	 591,949	 388,716	 34%	

Gross	Deforestation	in	the	site,	2012‐2022	(ha)	 101,249	 140,439	 128,215	 89,539	 30%	

AATR_RT	4	‐	Chiapas	
	

Reference	region	 1.60%	 4.40%	 7.83%	 3.90%	
	

Gross	Deforestation	per	RR,	2012‐2022	(ha)	 47,433	 130,466	 232,207	 115,629	 50%	

Gross	Deforestation	in	the	site,	2012‐2022	(ha)	 5,101	 22,180	 43,245	 19,139	 56%	

AATR_RT	5	‐	Raramuri	
	

Reference	region	 0.23%	 0.58%	 0.57%	 0.38%	
	

Gross	Deforestation	per	RR,	2012‐2022	(ha)	 996	 2,510	 2,493	 1,628	 35%	

Gross	Deforestation	in	the	site,	2012‐2022	(ha)	 ‐	 ‐	 ‐	 ‐	 0%	

AATR_RT	6	‐	Valle	de	Bravo	
	

Reference	region	 0.35%	 0.39%	 0.52%	 0.40%	
	

Gross	Deforestation	per	RR,	2012‐2022	(ha)	 3,573	 3,963	 5,219	 4,032	 23%	

Gross	Deforestation	in	the	site,	2012‐2022	(ha)	 2,223	 2,441	 3,087	 2,481	 20%	

AATR_RT	7	‐	Itsmo	
	

Reference	region	 3.13%	 4.57%	 4.19%	 2.10%	
	

Gross	Deforestation	per	RR,	2012‐2022	(ha)	 73,122	 106,819	 97,975	 49,128	 50%	

Gross	Deforestation	in	the	site,	2012‐2022	(ha)	 3,779	 6,429	 5,729	 1,912	 67%	

Note:	All	rates	are	gross	over	the	10	year	period,	percent	where	indicated	otherwise	hectares.	Alternative	(BAU)	is	the	
rate	of	deforestation	from	the	alternative	(negative	binomial)	regression	model	of	the	“business‐as‐usual”	or	non‐REDD+	
scenario;	Preferred	(BAU)	is	the	rate	from	the	preferred	(negative	binomial)	model	of	the	non‐REDD+	scenario;	Preferred	
(REDD)	is	the	rate	from	the	preferred	model	of	the	REDD+	scenario.	Note	that	historical	deforestation	values	differ	from	
those	in	the	global	analysis	since	the	historical‐deforestation	maps	were	filtered	for	the	local	analysis.	The	filtering	
removed	any	patches	of	forest,	non‐forest	or	deforestation	for	a	given	time	period	smaller	than	one	hectare.	
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Figure	5.4.1a.	“Hard”	prediction	of	deforestation,	2012‐2022,	Oaxaca	Istmo.	AATR	site	highlighted	in	
yellow	thatching.		The	red	areas	indicate	the	predicted	deforestation	that	would	occur	in	a	business‐as‐usual	
scenario,	while	the	blue	area	is	the	deforestation	that	would	occur	with	a	$10/tCO2	carbon	incentive.		Areas	
that	are	blue	are	deforested	under	both	scenarios.	Yellow	areas	are	non‐forest	and	black	areas	fall	outside	the	
boundary	of	the	reference	region.	

	
	
Figure	5.4.2b.	“Soft”	transition	potential	surface,	Oaxaca	Istmo		AATR	site	and	reference	region.		Areas	
in	blue	represent	lower	transition	potential,	or	areas	less	likely	to	transition,	and	areas	in	red	indicate	high	
transition	potential,	or	areas	more	likely	to	transition.		Black	areas	are	non‐forest	or	fall	outside	the	boundary	
of	the	reference	region.	
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Figure	5.4.3a.	“Hard”	prediction	of	deforestation,	2012‐2022,	Oaxaca	Mixteca.	AATR	site	highlighted	in	
yellow	thatching.	The	red	areas	indicate	the	predicted	deforestation	that	would	occur	in	a	business‐as‐usual	
scenario,	while	the	blue	area	is	the	deforestation	that	would	occur	with	a	$10/tCO2	carbon	incentive.		Areas	
that	are	blue	are	deforested	under	both	scenarios.	Yellow	areas	are	non‐forest	and	black	areas	fall	outside	the	
boundary	of	the	reference	region.		

	
	
Figure	5.4.2b.	“Soft”	transition	potential	surface,	Oaxaca	Mixteca	AATR	site	and	reference	region.		
Areas	in	blue	represent	lower	transition	potential,	or	areas	less	likely	to	transition,	and	areas	in	red	indicate	
high	transition	potential,	or	areas	more	likely	to	transition.		Black	areas	are	non‐forest	or	fall	outside	the	
boundary	of	the	reference	region.	
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Figure	5.4.4a.	“Hard”	prediction	of	deforestation,	2012‐2022,	Oaxaca	Sierra	Norte.		AATR	site	
highlighted	in	yellow	thatching.	The	red	areas	indicate	the	predicted	deforestation	that	would	occur	in	a	
business‐as‐usual	scenario,	while	the	blue	area	is	the	deforestation	that	would	occur	with	a	$10/tCO2	carbon	
incentive.		Areas	that	are	blue	are	deforested	under	both	scenarios.	Yellow	areas	are	non‐forest	and	black	
areas	fall	outside	the	boundary	of	the	reference	region.	

	
	

Figure	5.4.3b.	“Soft”	transition	potential	surface,	Oaxaca	Sierra	Norte	AATR	site	and	reference	region.		
Areas	in	blue	represent	lower	transition	potential,	or	areas	less	likely	to	transition,	and	areas	in	red	indicate	
high	transition	potential,	or	areas	more	likely	to	transition.		Black	areas	are	non‐forest	or	fall	outside	the	
boundary	of	the	reference	region.	
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Figure	5.4.5a.	“Hard”	prediction	of	deforestation,	2012‐2022,	Sierra	Chiapas.		AATR	site	highlighted	in	
yellow	thatching.	The	red	areas	indicate	the	predicted	deforestation	that	would	occur	in	a	business‐as‐usual	
scenario,	while	the	blue	area	is	the	deforestation	that	would	occur	with	a	$10/tCO2	carbon	incentive.		Areas	
that	are	blue	are	deforested	under	both	scenarios.	Yellow	areas	are	non‐forest	and	black	areas	fall	outside	the	
boundary	of	the	reference	region.	

	
	
Figure	5.4.4b.	“Soft”	transition	potential	surface,	Sierra	Chiapas	site	and	reference	region.		Areas	in	
blue	represent	lower	transition	potential,	or	areas	less	likely	to	transition,	and	areas	in	red	indicate	high	
transition	potential,	or	areas	more	likely	to	transition.		Black	areas	are	non‐forest	or	fall	outside	the	boundary	
of	the	reference	region.	
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Figure	5.4.6a.”Hard”	prediction	of	deforestation,	2012‐2022,	Cutzmala	Valle	Bravo.	AATR	site	
highlighted	in	yellow	thatching.	The	red	areas	indicate	the	predicted	deforestation	that	would	occur	in	a	
business‐as‐usual	scenario,	while	the	blue	area	is	the	deforestation	that	would	occur	with	a	$10/tCO2	carbon	
incentive.		Areas	that	are	blue	are	deforested	under	both	scenarios.	Yellow	areas	are	non‐forest	and	black	
areas	fall	outside	the	boundary	of	the	reference	region.	

	
	
Figure	5.4.5b.	“Soft”	transition	potential	surface,	Cutzmala	Valle	Bravo	AATR	site	and	reference	
region.		Areas	in	blue	represent	lower	transition	potential,	or	areas	less	likely	to	transition,	and	areas	in	red	
indicate	high	transition	potential,	or	areas	more	likely	to	transition.	Black	areas	are	non‐forest	or	fall	outside	
the	boundary	of	the	reference	region.	
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Figure	5.4.7a.	”Hard”	prediction	of	deforestation,	2012‐2022,		Sierra	PUCC.	AATR	highlight	in	yellow	
thatching.	The	red	areas	indicate	the	predicted	deforestation	that	would	occur	in	a	business‐as‐usual	
scenario,	while	the	blue	area	is	the	deforestation	that	would	occur	with	a	$10/tCO2	carbon	incentive.		Areas	
that	are	blue	are	deforested	under	both	scenarios.	Yellow	areas	are	non‐forest	and	black	areas	fall	outside	the	
boundary	of	the	reference	region.	

	
	
Figure	5.4.6b.	“Soft”	transition	potential	surface,	Sierra	PUCC	site	and	reference	region.		Areas	in	blue	
represent	lower	transition	potential,	or	areas	less	likely	to	transition,	and	areas	in	red	indicate	high	transition	
potential,	or	areas	more	likely	to	transition.		Black	areas	are	non‐forest	or	fall	outside	the	boundary	of	the	
reference	region.	
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.	

Figure	5.4.8a.	”Hard”	prediction	of	deforestation,	2012‐2022,	Sierra	Raramuri.	AATR	site	highlight	in	
yellow	thatch.		The	red	areas	indicate	the	predicted	deforestation	that	would	occur	in	a	business‐as‐usual	
scenario,	while	the	blue	area	is	the	deforestation	that	would	occur	with	a	$10/tCO2	carbon	incentive.		Areas	
that	are	blue	are	deforested	under	both	scenarios.	Yellow	areas	are	non‐forest	and	black	areas	fall	outside	the	
boundary	of	the	reference	region.	

	
	
Figure	5.4.7b.	“Soft”	transition	potential	surface,	Sierra	Raramuri.	AATR	site	and	reference	region.		
Areas	in	blue	represent	lower	transition	potential,	or	areas	less	likely	to	transition,	and	areas	in	red	indicate	
high	transition	potential,	or	areas	more	likely	to	transition.		Black	areas	are	non‐forest	or	fall	outside	the	
boundary	of	the	reference	region.	
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5.5.Conclusions	

Among	the	local	regions	studied,	deforestation	is	of	greatest	concern	in	Sierra	Pucc	Los	
Chenes,	then	followed	by	Oaxaca	Istmo,	Oaxaca	Sierra	Norte	and	Sierra	Chiapas.		The	remaining	
regions	had	very	low	annual	deforestation	rates	during	2000	through	2012.		Sierra	Pucc	Los	Chenes	
is	of	further	note	because	within	this	region	the	percent	deforestation	rate	was	greatest	inside	the	
AATRs.		

In	the	regions	with	relatively	high	deforestation	rates,	deforestation	was	not	as	locally	
concentrated	as	is	often	found	in	other	areas.		The	deforestation	patterns	in	Oaxaca	Istmo,	Oaxaca	
Sierra	Norte	and	Sierra	Chiapas	were	mostly	in	a	sub‐region,	although	quite	spread	throughout	the	
sub‐region	as	opposed	to	very	concentrated	around	towns	and	major	roads.		In	Sierra	Pucc	Los	
Chenes,	deforestation	was	spread	over	most	of	the	study	region.		

Land‐use	designations	such	as	ejidos	and	comunidades		were	not	included	in	the	final	
models.		However	when	tested	they	did	have	a	large	impact	on	the	transition	potential	surfaces.		
The	effects	of	individual	ejidos	and	comunidades	varied	a	lot	both	between	sites	and	within	sites.		In	
some	cases	ejidos	would	reduce	the	likelihood	of	deforestation	and	in	other	cases	they	would	
greatly	increase	the	likelihood.		This	is	an	indication	that	individual	land‐use	and	economic	
decisions	at	the	ejido	or	comunidades	level	may	have	a	strong	influence	on	patterns	of	deforestation.		
However,	further	research	would	be	required	to	fully	explore	these	relationships	and	perhaps	
group	ejido	or	comunidades	based	on	their	land‐use	practices.	

	 These	patterns	of	historical	deforestation	point	MREDD	Alliance	partners	to	areas	
where	further	exploration	may	be	warranted.	First,	we	re‐note	that	the	definition	of	forest	and	the	
manner	in	which	the	forest	2000	benchmark	was	defined	is	significant.		Much	of	the	deforestation	
we	see	may	actually	be	the	re‐clearance	of	fallows	and	/	or	plantations,	rather	than	clearing	of	
mature	forest.		How	much	deforestation	in	these	areas	is	actually	that	of	mature	forest	could	be	
assessed	several	ways.		First,	one	could	conduct	a	visual	qualitative	assessment.	This	could	be	by	
superimposing	the	deforestation	sites	over	the	reflectance	mosaic	for	2000	from	UMD.		This	could	
be	done	online	via	the	UMD‐Google	site,	or	locally	if	files	are	downloaded.		

Second,	a	map	of	a	best	estimate	of	the	distribution	of	mature	forest	in	2000	could	be	
combined	with	the	deforestation	data	in	a	GIS.		This	could	be	one	of	several	a	national	vegetation	
map,	although	that	map	itself	should	be	assessed	visually	with	the	Landsat	mosaic,	since	many	
national	forest	cover	maps	also	have	most	fallows	combined	into	the	forest	class.		For	the	Chiapas	
and	Yucutan	sites,	as	well	as	another	other	sites	of	interest	within	the	five	southern	states	of	
Mexico,	the	Conservation	International	(CI)	deforestation	map	could	be	used.		This	map	reports	
deforestation	for	three	dates,	including	2000	(Vaca	et	al.	2005).		The	2000	forest	cover	estimate	
could	be	used	as	an	example	benchmark	map	for	thus	evaluation,	and	CI	and	partners	attempted	to	
minimize	any	inclusion	of	fallows	or	plantations	in	its	mature	forest	class.		

Even	though	our	forest	definition	and	benchmark	map	include	secondary	forests	and	
plantations,	the	patterns	of	tree‐cover	loss	among	these	cover	types	plus	forest	are	revealing.		The	
findings	may	be	interpreted	as	revealing	both	mature	forest	clearance	and	a	form	of	agricultural	
intensification,	via	fallow	clearing,	that	is	often	associated	with	the	same	land‐use	pressures	that	
are	linked	to	mature	forest	clearing.	
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On	the	models,	one	should	interpret	both	the	map	of	deforestation	potential	and	the	hard	
classification	of	predicted	deforestation.		The	former	can	be	seen	as	a	distribution	of	the	relative	
potential	for	deforestation,	not	too	dissimilar	to	the	continuous	deforestation	likelihood	maps	
output	from	the	national	analysis.		The	latter	is	strictly	the	cells	of	greatest	potential	that	add	up	to	
the	area	of	deforestation	predicted	for	the	study	region	by	the	national	model.	

Our	recommendation	is	to	follow	up	this	analysis	with	a	second	pass	that	attempts	to	
stratify	historical	deforestation	into	that	of	mature	forest	versus	other	cover	types.	If	done,	the	
spatial	models	could	be	re‐run	efficiently,	especially	since	the	modeling	datasets	are	organized	and	
ready	for	additional	iterations.		If	done,	one	could	consider	characterizing	deforestation	for	specific	
land	uses,	however	information	on	those	would	be	derived	from	remote	sensing	products,	rather	
they	would	need	to	be	based	on	expert	opinion	and	ancillary	data.		

Finally,	municipal	level	variables,	such	as	agricultural	yield	and	evidence	likelihood	were	
not	included	in	the	LCM	model	because	they	had	an	overly	powerful	effect	on	the	models.	These	
were	the	polygon‐level	variables	that	we	note	were	excluded	because	of	extreme	model	sensitivity	
in	the	methods	section.		Essentially,	all	of	the	predicted	deforestation	would	locate	into	a	single	
municipality.		However,	there	may	be	real	and	strong	effects	of	municipal‐level	deforestation	at	the	
sub‐national	level	in	Mexico.		Further	exploration	into	other	ways	to	incorporate	this	information	
into	the	models	is	warranted.	

For	either	these	models	or	later	iterations	of	models,	there	are	several	options	for	validation	
of	them.		One	could	calibrate	each	model	with	the	deforestation	patterns	only	through	2005	or	
2010,	for	example,	and	predict	deforestation	through	2012.	The	resulting	distribution	of	
deforestation	would	then	be	compared	to	observed	deforestation	in	the	UMD	product.		This	is	the	
most	common	approach	to	validation	recommended	in	VCS‐approved	methods.		

There	are	other	aspects	of	the	VCS‐approved	methods	that	we	find	problematic	and	
recommend	considering	altering.		First,	the	several	VCS	methods	recommend	using	statistic	that	is	
calculated	at	the	cell	level	is	fine	if	the	goal	of	a	model	is	to	predict	deforestation	at	that	level.	
However,	that	is	usually	not	the	goal.		For	example,	if	one	cell	is	predicted	as	deforestation,	and	the	
actual	deforestation	map	does	not	show	change	in	that	exact	cell	but	does	show	change	in	a	
neighbouring	cell,	then	the	statistic	would	imply	that	the	model	has	zero	accuracy.		This	is	why	a	
“successful”	model	according	to	this	statistic	is	one	that	has	an	accuracy	of	five	percent	or	more.		
While	of	academic	interest	to	model	developers	interested	in	performance	at	the	cell	level,	it	is	
difficult	to	accept	this	as	logical	for	REDD+	projects	or	most	regional‐level	applications.	

For	this	study,	and	for	all	REDD+	projects,	the	question	of	interest	is	whether	models	
predict	accurately	deforestation	for	certain	management	or	study	units,	such	as	proposed	REDD+	
sites,	leakage	zones,	political	districts,	etc.		These	units	are	represented	by	polygons,	and	thus	the	
comparison	should	be	made	at	the	polygon	level	or	at	a	scale	similar	to	the	polygons	of	interest.	
Once	this	is	understood,	there	are	several	statistics	that	could	be	used	to	validation	models	at	the	
polygon	level.	

Second,	VCS‐approved	methods	require	producing	the	hard	classification	of	predicted	
deforestation.	This	forces	all	deforestation	into	strictly	the	cells	of	highest	potential.		While	
interesting,	this	is	unrealistic	and	a	form	of	over‐fitting.			The	best	evidence	of	the	lack	of	realism	of	
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this	approach	is	that	the	historical	data	themselves	indicate	that	much	deforestation	occurs	in	sites	
that	are	of	moderate	deforestation.			The	national	model	does	not	suffer	from	this	problem	since	it	
reports	a	continuous	estimate	of	sub‐pixel	deforestation	or	deforestation	likelihood.		The	same	
could	be	done	with	the	local	models	that	we	have	run	by	skipping	the	step	of	producing	the	hard	
classification	of	predicted	deforestation.		Instead,	one	can	take	the	map	of	deforestation	potential	
and	rescale	the	values	such	that	they	add	up	to	the	defined	regional	rate	predicted	by	the	national	
model.		This	essentially	produces	a	continuous	sub‐cell	deforestation	output.	These	can	then	be	
summed	for	any	set	of	polygons	and	compared	to	the	polygon‐level	rates	derived	from	observed	
deforestation	in	order	to	validate	models.	
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6. Conclusion		

6.1.	Summary	of	report	findings	and	directions	for	future	research	

We	conducted	a	series	of	analyses	that	combine	both	national	and	local	scale	modeling	to	
aid	the	MREDD	Alliance	partners	in	assessing	the	vulnerability	of	Mexico’s	forests	to	deforestation.	
These	analyses	focus	on	the	vulnerability	of	forested	lands	within	Mexico’s	AATRs,	accounting	for	
Mexico’s	unique	forest	management	dynamics	through	disaggregating	the	results	by	land	
ownership	types.	These	analyses	are	ultimately	meant	to	inform	national	and	subnational	policy,	
paving	the	way	for	incentive	based	programs,	and	ultimately	reduced	deforestation	vulnerability	in	
Mexico.			Our	methodology	includes	three	different	and	complementary	approaches:	(i)	reviewing	
the	existing	literature,	(ii)	a	national	econometric	analysis	and	associated	scenario	simulation	
modeling,	adapting	the	approach	of	the	Open	Source	Impacts	of	REDD+	Incentives	(OSIRIS)	model	
and	(iii)	local‐level	spatial	spatial	modeling	for	each	AATR,	conducted	using	the	IDRISI‐Selva	Land	
Change	Modeler	(LCM).			Key	findings	from	each	of	these	three	parts	of	the	report	are	summarized	
below,	along	with	some	discussion	of	next	steps	for	future	research.		 	

6.1.1.	Literature	review	and	meta‐analysis	

The	literature	review	yielded	insights	based	on	an	overview	of	deforestation	as	well	as	a	
meta‐analysis	on	statistical	studies	of	drivers	of	deforestation.		The	overview	suggests	that,	while	
deforestation	rates	in	Mexico	have	decreased,	the	trend	persists,	leading	to	more	biodiversity	loss,	
increased	greenhouse	gas	emissions,	and	reduced	subsistence	opportunities	for	local	populations.			
Land	tenure	(community	land	management,	including	ejidos),	rural	agricultural	support,	and	
payments	for	ecosystems	services	are	major	focuses	of	the	literature.		Conclusions	on	the	role	of	the	
major	land	tenure	type	in	Mexico,	community	land	management,	are	mixed.		Studies	are	also	in	
disagreement	on	the	role	of	such	rural	agricultural	support	programs	as	PROCAMPO.		However	
most	studies	agree	that	payments	for	ecosystems	services	decrease	deforestation	risk,	with	some	
caveats	related	to	regional	differences	and	starting	deforestation	risk.		These	relationships	were	
mirrored	in	the	meta‐analysis:	regression	results	were	mixed	for	ejidos	and	rural	income	support,	
while	results	for	PES	tended	to	be	associated	with	decreased	deforestation.		Furthermore,	results	
from	the	meta‐analysis	revealed	other	variables	with	consistent	relationships	to	deforestation	in	
Mexico.		The	variables	most	associated	with	reduced	deforestation	in	Mexico	were	associated	with	
protection	measures	(as	proxied	by	protected	areas	and	PES),	reduced	accessibility	(elevation),	
reduced	resource	competition	(property	size)	and	community	forestry.		The	variables	most	
associated	with	increased	deforestation	were	associated	with	areas	where	economic	returns	to	
agriculture	are	higher	(proximity	to	agriculture	and	agriculture	returns),	biophysical	conditions	for	
conversion	are	favorable	(soil	suitability),	and	competition	for	resources	are	high	(population).		
Most	of	these	relationships	were	robust	when	results	were	disaggregated	to	the	Yucatan	Peninsula.		
Notably	however,	at	the	national	level,	poverty	appears	to	be	linked	to	increases	in	deforestation,	
while	in	the	Yucatán	Peninsula	poverty	is	associated	with	decreased	deforestation.		Conversely,	
indigenous	population	is	associated	with	decreased	deforestation	at	the	national	level,	but	is	
associated	with	higher	deforestation	in	the	Yucatán	Peninsula.		

These	discrepancies	support	the	widely	held	view	that	Mexico’s	landscape	and	the	related	
drivers	of	deforestation	vary	greatly	by	region.		The	inconsistencies	also	suggest	further	study	of	



	

70	

	

the	dynamics	and	impact	of	certain	variables	on	deforestation,	including	community	forestry,	land	
tenure	type,	indigenous	populations,	rural	agricultural	support,	PES,	and	poverty.		The	negative	
relationship	between	community	forestry	and	deforestation	isn’t	intuitive;	it	invites	further	
research	into	the	sustainability	and	biodiversity	retention	of	planted	forests	and	their	impact	on	
primary	adjacent	forests	over	time.		The	mixed	relationships	of	variables	associated	with	
community	land	management	invite	a	deeper	understanding	of	the	qualitative	differences	between	
such	land	tenure	types	as	communidades	and	ejidos	at	household	and	community	levels,	and	how	
these	differences	impact	local	tree	cover.		The	apparent	regional	discrepancy	of	indigenous	
populations’	influence	on	tree	cover	at	the	national	level	and	in	the	Yucatan	Peninsula	suggests	a	
similar	qualitative	investigation.		The	caveats	to	PES	highlighted	by	the	literature	and	the	mixed	
meta‐analysis	results	for	rural	support	programs	highlight	the	need	to	understand	the	relationship	
between	income	and	deforestation,	prompting	research	into	the	advantages	of	tying	support	for	
rural	incomes	to	the	maintenance	of	forest	resources	in	higher	risk	areas.		The	regional	differences	
of	the	impact	of	poverty	on	deforestation	suggest	that	perhaps	deforestation	cannot	be	directly	
attributed	to	poverty,	highlighting	the	need	to	understand	this	dynamic	within	concurrent	
geographical	or	temporal	trends	simultaneously	affecting	deforestation.	

6.1.2.	National	modeling	

We	statistically	analyzed	detailed	spatially‐explicit	data	on	annual	forest	cover	losses	across	
all	of	Mexico	over	2000‐2012	in	relation	to	variation	in	estimated	gross	agricultural	revenues	and	
proxies	for	fixed	and	variable	costs	using	observable	site	characteristics.		The	goal	was	to	capture	
the	influence	of	the	economic	net	benefits	from	converting	land	from	forest	to	non‐forest	uses	for	
the	purposes	of	calibrating	a	policy‐simulation	model	that	can,	for	example,	analyze	the	impact	of	
different	policy	structures	to	create	incentives	for	low‐emissions	practices	for	reducing	
deforestation.				

	We	aggregate	data	from	(Hansen,	et	al.,	2013)	to	the	900m	resolution	and	model	
deforestation	in	relation	to	variation	in	estimated	gross	agricultural	revenues	and	proxies	for	fixed	
and	variable	costs	using	observable	site	characteristics.		We	quantify	the	effects	of	agricultural	
revenue	on	deforestation	in	Mexico	based	on	historical	data,	and	then	simulate	deforestation	for	
alternative	agricultural	revenue	scenarios	for	our	study	period	(2001‐2011).		We	further	project	
future	deforestation	(2014‐2023)	under	a	business‐as‐usual	scenario,	based	on	2012	conditions,	
and	alternative	carbon	incentives	for	practices	to	reduce	deforestation.			The	results	from	the	
simulation	provide	regional	deforestation	rates	as	an	input	to	the	LCM	modeling	of	the	seven	
AATRs.			

The	ultimate	goal	of	this	analysis	is	to	help	inform	cost‐effective	policy	approaches	to	
reduce	deforestation.			To	help	achieve	this	goal,	there	are	several	future	extensions	of	this	
research,	including	further	model	validation	and	exploring	the	implications	of	additional	variables.		
The	current	analysis	focused	on	the	role	of	economic	returns	to	crop	production.		Additional	
analyses	would	be	needed	to	identify	the	specific	role	of	different	land	ownership	categories,	such	
as	different	types	of	ejidos	and	other	communal	lands,	as	well	as	to	explicitly	identify	the	role	of	
PROCAMPO,	as	well	as	other	agricultural	and	forestry	development	programs,	along	with	the	role	of	
existing	conservation	incentives.		With	additional	potential	data,	we	also	might	be	able	to	consider	
changes	between	forests	and	other	land‐uses	beyond	crop	production.			In	terms	of	the	carbon	
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emissions	reductions	cost	estimates,	a	priority	is	to	extend	the	analysis	to	include	below‐ground	
carbon	stocks,	as	well	as	further	compare	our	estimates	with	other	data	sources.			While	this	
analysis	considered	only	forest	losses,	an	important	extension	would	be	to	conduct	an	analysis	of	
the	data	from	UMD	and	other	data	sources	on	forest	gains.		This	would	provide	a	more	complete	
picture	of	the	forest	and	carbon	dynamics	in	Mexico.		

	Also,	with	additional	computational	power,	we	could	improve	the	spatial	resolution	and	
further	refine	the	econometric	estimation	to	further	model	the	spatio‐temporal	processes	driving	
deforestation.		We	could	explicitly	estimate	and	conduct	simulations	using	a	full	fixed‐effects	model,	
as	well	as	alternative	spatial	panel	data	models,	which	help	control	for	unobserved	variations	that	
only	exist	between	neighboring	regions	(or	spatial	autocorrelation),	using	spatial	weighting	matrix.			
These	variations	may	not	be	controlled	for	with	a	non‐spatial	panel	data	model.			Another	extension	
would	be	to	explicitly	consider	the	dynamic	decision‐process	based	on	survival	modeling	
approaches.		In	addition,	we	can	improve	how	we	conduct	simulations,	updating	the	spatial	pattern	
of	the	surrounding	landscape	at	each	time	step.					

In	addition	to	possible	extensions	for	the	underlying	analysis,	a	main	priority	for	future	
research	is	to	use	the	econometric	estimation	to	calibrate	a	version	of	the	Open	Source	Impacts	of	
REDD+	Incentives	(OSIRIS)	model	to	analyze	alternative	REDD+	and	agricultural	policy	scenarios	in	
Mexico.		This	will	require	linking	the	econometric	model	to	a	general	equilibrium	model	to	account	
for	possible	price	feedbacks,	which	could	produce	deforestation	shifts	or	“leakage.”				This	will	also	
entail	building	an	open‐source	interface	that	can	make	the	model	user‐friendly	and	more	broadly	
usable.		These	steps	will	enable	more	realistic	examination	of	alternative	policy	designs	for	creating	
economic	incentives	for	promoting	low‐emissions	agricultural	development	and	reducing	
deforestation	in	Mexico.		

6.1.3.Local	Modeling	

The	results	of	the	deforestation	prediction	maps	provides	interesting	useful	information	on	
areas	most	vulnerable	to	transition	and	the	inclusion	of	the	national	model	for	determining	the	rate	
of	transitions	which	account	for	national	level	policy	decisions.		The	combination	of	the	LCM	and	
national	model	provides	a	significant	improvement	to	using	either	model	in	isolation.		One	
weakness	of	using	the	LCM	in	isolation	is	that	the	rate	of	deforestation	is	either	solely	based	on	the	
historical	rates	or	based	on	subjective	analyst	opinion.		Including	deforestation	rates	derived	from	
the	national	model	provides	a	quantitative	rational	for	picking	a	particular	rate	based	on	national	
and	regional	policy	decisions.		While	using	national	model	in	isolation	does	not	have	the	fine	spatial	
resolution	that	would	be	necessary	for	local	and	site	level	analysis.	

The	combination	of	the	two	modeling	approaches	could	be	further	strengthened	by	
applying	the	same	filtering	and	pre‐processing	methods.		This	was	not	done	in	this	study	as	the	two	
models	were	developed	in	parallel	using	the	information	most	applicable	for	each	individual	
approach.		The	cohesion	of	the	models	could	also	be	improved	by	creating	transition	potentials	at	
the	reference	region	level	and	applying	the	rates	from	the	national	model	at	the	AART	scale,	which	
could	help	to	mitigate	the	uneven	allocation	of	deforestation,	which	lead	to	no	predicted	
deforestation	within	2	of	the	AATR	sites.	
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A	final	consideration	for	strengthening	the	allocation	of	deforestation	would	be	to	use	a	
continuous	or	non‐discrete	allocation	of	deforestation.		Meaning	that	the	deforestation	would	be	
allocated	at	a	sub‐pixel	level,	in	which	all	pixels	available	for	transition	would	be	assigned	a	small	
amount	of	deforestation	based	on	the	relative	value	of	that	pixel.		The	disadvantage	to	this	method	
is	that	map	of	predicted	deforestation	would	not	be	as	easily	visualized.	However	the	area	
estimates	within	AATRs	or	other	land‐use	categories	would	be	more	likely	to	represent	reality.		
This	method	requires	further	research,	but	provides	an	alternative	to	mitigating	the	uneven	
allocation	of	deforestation,	especially	in	sites	with	low	transition	rates.		

We	stress	that	these	model	outputs	cannot	be	used	for	reference	emissions	levels	for	
projects.	The	discussion	section	indicates	several	of	the	issues	that	arise	from	using	the	sources	of	
data	and	methods	that	we	have	used,	and	suggests	some	possible	follow‐up	analyses	that	could	be	
done	as	next	steps	to	further	explore	the	relative	threats	of	deforestation	among	these	sites.	
However,	the	model	results	provided	here	do	strongly	indicate	several	findings.	First,	some	sites	
have	very	little	historical	deforestation	and	threat	over	the	coming	decade.	Second,	there	is	a	
consistent	trend	for	reductions	in	deforestation	rates	among	all	sites	if	REDD	were	implemented	at	
a	$10	carbon	price	and	with	the	other	assumptions	of	the	national	OSIRIS	REDD	model.	Third,	the	
study	indicates	which	sites	likely	have	the	highest	maximum	potential	for	emissions	reductions.	In	
terms	of	REDD	potential,	these	two	sites	have	the	greatest	if	only	considering	the	maximum	
emissions	reductions	obtainable,	as	both	would	have	high	reference	emissions	levels.	For	Oaxaca,	
an	advantage	may	be	that	the	work	to	reduce	emissions	can	be	conducted	in	a	fairly	small	area	and	
focussed	on	few	communities	or	ejidos.	In	Sierra	Pucc	–	Los	Chenes,	while	the	maximum	reduction	
possible	is	greater,	a	REDD	project	would	need	to	work	over	most	of	the	site,	which	may	prove	
much	more	costly	and	riskier.		
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