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Abstract: Forest degradation in the Brazilian Amazon due to selective logging and forest fires 

may greatly increase the human footprint beyond outright deforestation. We demonstrate a 

method to quantify annual deforestation and degradation simultaneously across the entire 

region for the years 2000–2010 using high-resolution Landsat satellite imagery. Combining 

spectral mixture analysis, normalized difference fraction index, and knowledge-based 

decision tree classification, we mapped and assessed the accuracy to quantify forest (0.97), 

deforestation (0.85) and forest degradation (0.82) with an overall accuracy of 0.92. We 

show that 169,074 km2 of Amazonian forest was converted to human-dominated land uses, 

such as agriculture, from 2000 to 2010. In that same time frame, an additional 50,815 km2 

of forest was directly altered by timber harvesting and/or fire, equivalent to 30% of the area 

converted by deforestation. While average annual outright deforestation declined by 46% 
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between the first and second halves of the study period, annual forest degradation increased 

by 20%. Existing operational monitoring systems (PRODES: Monitoramento da Florestal 

Amazônica Brasileira por Satélite) report deforestation area to within 2% of our results, 

but do not account for the extensive forest degradation occurring throughout the region due 

to selective logging and forest fire. Annual monitoring of forest degradation across tropical 

forests is critical for developing land management policies as well as the monitoring of 

carbon stocks/emissions and protected areas. 

Keywords: deforestation; forest degradation; Amazon; decision tree 

  

1. Background and Rationale 

Brazil possesses a world treasure in its portion of the Amazon tropical rainforests, the largest 

contiguous forest area on the planet, encompassing around 4 million km2 [1]. Roughly 20% of the 

original forest cover of this region has been converted to pasture, agricultural lands, and, to a lesser 

degree, urban areas, according to the Brazilian government forest monitoring program, named 

PRODES [2] (monitoramento da floresta amazônico por satélite; http://www.obt.inpe.br/prodes/ 

index.php). Another major, but less understood source of change in this region is the degradation of 

standing forests. This occurs primarily through selective logging, forest fires and edge effects related 

to forest fragmentation [3,4]. Forest degradation may annually affect an area equal in magnitude to 

deforestation [5,6], and potentially be exacerbated by climate change and ocean temperature anomalies 

which may lead to more frequent droughts and longer dry seasons [7]. Most of this forest conversion 

has taken place in the past 40 years and Landsat observation can be used to detect, quantify and 

analyze deforestation and other land-use interactions and socio-environmental impacts [8]. 

Relationships and interactions among deforestation and forest degradation have been shown, but the 

extent to which they represent land cover dynamics across the basin and their variability in both space 

and time are still poorly quantified. Existing studies have either focused on local-to-regional scales 

with longer timespans, or larger areas with short temporal windows. For example, Landsat images 

from 1999 to 2004 have been used to assess the likelihood of selectively logged forests being cleared 

in four of the nine states of the Brazilian Amazon [9]; a combination of visual interpretation and  

semi-automated techniques were used to map selective logged forests in 1992, 1996 and 1999 [10]; 

and an assessment of the interactions among deforestation, forest fragmentation and biomass collapse 

of forest edges was conducted using a long time series of 23 years (1985–2008) covering six Landsat 

images path/row scenes located in Rondônia state [11], in the southern Brazilian Amazon. Subsequent 

work expanded the geographic coverage for this analysis to the entire Brazilian Amazon region 11, but 

shortened the temporal coverage to 10 years (2001–2010). Both examples evaluated one type of forest 

degradation process and its interaction with deforestation, and there are many other local and regional 

studies in the scientific literature (e.g., [10,12–16]) lacking complete analyses of the spatial and large 

temporal coverage of forest changes associated with deforestation and the major forest degradation 

drivers (i.e., logging, fires and forest fragmentation). What is needed to better understand these 

interrelated forest disturbances is a high resolution, basin-wide product, similar to the PRODES 
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deforestation mapping effort, that is capable of monitoring deforestation, the resulting forest edges that 

isolate forest remnants, and forest degradation associated with selective logging and incursions of fire. 

Anthropogenic forest disturbance from logging and fires produces long lasting changes in forest 

structure and biomass [17–19], but these changes are hard to detect in satellite imagery [20] and are 

quickly obscured by the regenerating forest canopy [17,21]. Previous studies have shown that 

monitoring of forest degradation is possible using Landsat imagery but that annual imaging would be 

required to provide accurate tracking of its transitory signal [17,21]. 

2. Objectives 

Our main objective here is to present in detail a methodology to process an extensive spatial and 

temporal series of Landsat imagery and classify forest cover changes associated with deforestation and 

forest degradation (logged and burned forests) (Figure 1). We applied these methods to a very large 

archive of Landsat images (1,465 scenes) covering the Brazilian Amazon and encompassing 11 years 

(2000–2010). Our second objective was to assess the accuracy of our classified products using a higher 

spatial resolution SPOT imagery dataset, and field-collected degradation data from 151 forest 

transects. We also compared our annual estimates of deforestation rates with available deforestation 

data from PRODES [2] for the Brazilian Amazon region and discuss the potential to apply our 

approach to other tropical forest regions. 

Figure 1. Forest degradation processes and interactions commonly found in the Brazilian 

Amazon. Pristine forests can be subject to selective logging, creating favorable conditions 

for burning when fires from adjacent agriculture fields unintentionally escape. Logging and 

fires can be recurrent, creating highly degraded forests. Eventually, degraded forests can be 

converted by deforestation, increasing forest edges and landscape fragmentation [8]. If 

degraded forests are not cleared, vegetation regeneration processes can prevail given the 

high resiliency of forests (Source: [3]). 
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3. Methods and Study Region 

We used 1,465 Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper (ETM+) images 

acquired during the 2000–2010 time period, covering most of the Brazilian Amazon Biome, to detect 

and map deforestation and forest degradation. The great majority of the images had a maximum cloud 

cover of 20%, but imagery with cloud cover up to 30% was occasionally used. Due to the lack of 

cloud-free Landsat images, the annual area mapped ranged from 106 to 157 images, out of a possible 

coverage of 192 for the entire study region (Figure 2), encompassing roughly 4 million km2. Most of 

the missing scenes were from the wetter and less populated portions of the study area. The southern 

and eastern regions of the Amazon, where the vast majority of deforestation and forest degradation 

take place, were well covered in all years. 

Figure 2. Landsat TM/ETM+ images used in mapping deforestation and forest 

degradation. A total of 1,465 images were acquired, predominantly (90%) from the image 

server of the National Institute for Space Research (INPE). 

 

Data from the satellite images were radiometrically normalized, converted to surface reflectance, and 

quantitatively analyzed to enable establishment of automatic, generic and consistent classification rules. 

We applied computing rules to detect possible classification inconsistencies over time and adjusted 

classification rules to correct for these problems. Finally, the maps generated with automatic 

classification were inspected and manually edited by analysts in order to correct residual 

misclassification errors. Map results were then tabulated and used to estimate annual deforestation and 

forest degradation rates. Annual periods used the reference date of 1 August (e.g., annual deforestation 

for the year 2001 is obtained for the period of 1 August 2000 through 31 July 2001; and so on for the 

following years) to match the protocol used officially by the Brazilian government (INPE-PRODES [2]). 
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Figure 3 illustrates the flow of the image processing procedures. Detailed descriptions of the individual 

image processing procedures are presented in sequence below. 

Figure 3. Flow of the image processing procedures as implemented with an ImgTools 

conceptual framework (a) including: (1) pre-processing, (2) spectral endmember library 

development, (3) Spectral Mixture Analysis (SMA); (4) Image Classification, and  

(5) Post-Classification processing and assessment. Most of the routines of this framework 

were implemented in ImgTools software [22] (b). 

(a)                                                                                (b)           

3.1 Image Processing 

3.1.1. Pre-Processing 

Our image classification approach requires pixel co-registration accuracies of <1 pixel to perform 

annual and multi-year forest change detection and image classification [3,21,22]. Image registration 

was performed using Delauney triangulation and nearest neighborhood resampling, available in ENVI 

4.7 software, with enough image control points (usually 10–20) to provide low root mean squared 

(RMS) errors (i.e., <1 pixel) that minimize misregistration errors in land cover changes detected  

over time [23]. 

Correction of spatially variable atmospheric contamination noise due to haze and smoke [24] was 

implemented in ImgTools [22]. The Carlotto technique assumes that smoke and haze primarily impact 

the visible bands, leaving the near-infrared (NIR) and short-wave infrared (SWIR) bands unaffected. 

Statistics are calculated for the entire image, in which average values for visible bands (e.g., bands 1, 2 

and 3 for Landsat TM/ETM+) are calculated for each unique combination of NIR and SWIR bands 

(e.g., bands 4, 5 and 7 for Landsat TM/ETM+). After calculating these statistics, the original values for 

the visible bands for a specific combination of the NIR and SWIR bands are replaced with the scene 

averages for that combination. This technique homogenizes contamination throughout a scene; thus, 

clear sky portions of the image gain a slight amount of contamination, while contamination is 

significantly reduced in areas under smoke or haze, providing atmospheric correction that improves 

overall image quality.  
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Following the pre-processing steps, we used ImgTools software [22] to perform radiometric 

correction of the Landsat satellite data using the gains and offset provided in the image metafile. 

Radiance data was converted to reflectance using other software (Atmospheric Correction Now, 

ACORN 4.0, ImSpec LLC, Boulder, CO, USA; or FLAASH ENVI module). More detail about these 

steps can be found elsewhere [21]. 

3.2. Spectral Mixture Analysis (SMA) 

SMA decomposes the spectral mixture—commonly found in the pixel reflectance values of 

remotely sensed data—into fractions of purer materials, known as endmembers (EM) [25]. 

ImgTools [22] was used to perform all SMA procedures described below, including the Normalized 

Differencing Fraction Index (NDFI) calculation [21]. The SMA model assumes that image spectra are 

formed by linear combinations of n pure spectra [26], such that: = , +  (1)

for 

= 1 
(2)

where Rb is the reflectance in band b, Ri,b is the reflectance for endmember i, in band b, Fi is the 

fraction of endmember i, and εb is the residual error for each band. The SMA model error is estimated 

for each image pixel by computing the Root Mean Square (RMS) error, given by: = [ ] /  (3)

SMA has been applied extensively in studies of the Amazon region used to generate fractions 

images used as input variables in subsequent image classification techniques [26,27] or to estimate 

biophysical properties of vegetation and soils [17,28–30]. The SMA model results were evaluated 

following a standard protocol to assess SMA results [26]. First, the RMS images were inspected and 

models with RMS values greater than 5% were discarded from the fraction change analysis. Next, 

fraction images were evaluated and interpreted in terms of field context and spatial distribution. 

Finally, histograms of the fraction images were inspected to quantify the percentage of pixels lying 

outside the range of 0%–100% and to evaluate fraction value consistency over time (i.e., that intact 

forest values were similar over time). Only models that showed mean fraction value consistency over 

time and had at least 98% of the values within 0%–100% were utilized. Models that did not pass one 

of these tests resulted in the image processing being redone with new parameter models (i.e., visibility, 

atmosphere type, etc.) for the atmospheric correction and repetition of each of the subsequent steps. 

3.2.1. Building the Endmember Spectral Library 

Standard global EM from the Landsat n-dimensional spectral space has been proposed [31]. We 

used this approach to standardize EM to determine generic image of green vegetation (GV),  
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non-photosynthetic vegetation (NPV) and soil to generate standard fraction images of these EM over 

the Brazilian Amazon [21].  

Identification of the nature and number of pure spectra (i.e., EM) in the image scene is imperative 

for a successful application of SMA models. Four EM are expected in forested environments: GV, 

NPV, Soil and Shade [21,32]. We applied a Cloud endmember to facilitate cloud masking. Image EM 

representing GV, NPV, Soil and Cloud were extracted from reference reflectance images selected 

across the region. The Shade endmember was assigned zero percent reflectance at all wavelengths 

(photometric shade). The pixel-purity-index (PPI), available in ENVI 4.0 [33], was used to identify 

image endmember candidates. Five image subsets (500 × 500 pixels), representing the variety of land 

cover types found in 40 Landsat images, were used as inputs for the PPI algorithm. The PPI results 

were used to identify pixel locations in the original image and extract the associated spectral curves. 

Final image EM were selected based on pixel location in the Landsat reflectance spectra with the aid of 

an n-dimensional visualization tool available in ENVI. The pixels located at the extremes of the 

spectral data were selected as candidate EM. Final EM were selected based on the spectral shape and 

image context (e.g., soil spectra are mostly associated with unpaved roads and NPV with pasture 

having senesced vegetation). ImgTools provide a set of generic EM for Landsat sensors obtained using 

the procedures described above. 

3.2.2. Normalized Difference Fraction Index (NDFI) 

To enhance the degradation signal caused by selective logging and forest burning, the Normalized 

Difference Fraction Index (NDFI) [3,21] was computed using the fraction images obtained with SMA: 

SoilNPVGV

Soil)(NPVGV
NDFI

Shade

Shade

++
+−=

 
(4)

where GVshade is the shade-normalized GV fraction given by, 

Shade100

GV
GVShade −

=
 

(5)

NDFI values range from −1 to 1. Theoretically, NDFI values in intact forest are expected to be high 

(i.e., about 1) due to the combination of high GVshade (i.e., high GV and canopy shade) and low NPV 

and soil values. As the forest becomes degraded, the NPV and soil fractions increase due to the 

diminished canopy cover, lowering NDFI values relative to intact forests. The synthetic NDFI band 

combines all reflectance information shown to be relevant for identifying and mapping degraded 

forests in the Amazon region [3,21]. 

3.3. Image Classification 

Image classification techniques were implemented in ImgTools [22] to speed up the extraction of 

information from satellite imagery through a Generic Classification Algorithm (GCA). The overall 

principle of GCA relies on: (i) normalized and noise reduced data sets; (ii) specific objectives 

regarding information extraction; (iii) combination of spectral, spatial and temporal pixel information 

to detect and map specific targets; and (iv) minimal analyst interference to check for misclassification 
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errors, most likely to happen when images are extensively covered by clouds. We used a  

knowledge-based decision tree classification (DTC) that implements hierarchical classification rules 

obtained through a recursive partition process of classification training samples or knowledge-based 

(i.e., empirical) classification rules. A default set of empirical knowledge-based rules is provided in 

ImgTools, obtained from extensive tests over the study region [3,22].  

We used fraction images obtained from SMA as data input variables for classification using the 

GCA tree rules (Figure 4). The variables selected for the GCA are indicated in the internal node and 

the final classes as terminal nodes. The first step, at the tree root level of this binary hierarchical 

classification process, was the masking out of cloudy areas. To do this, we used the input variable 

cloud fraction (Vcloud) obtained from SMA. When Vcloud ≥ 10%, image pixels were classified as Cloud 

which is a terminal node. Pixels that did not satisfy this condition were classified as No-Cloud and 

further classification rules were applied. VGVs provide the abundance of green vegetation with pixels 

and played an important role in separating forest and non-forest areas. Pixels with VGVs ≥ 85% are 

associated with croplands and young (i.e., <10 years old) second growth forests and, therefore, were 

classified as Deforestation (i.e., previously deforested areas). Forests with high VNDFI ≥ 0.75 were 

classified as Forest (NDFI variable was rescaled to 0–200, meaning that VNDFI ≥ 175 in Figure 4 

translates to VNDFI ≥ 0.75). Then, forested pixels that did not satisfy “VNDFI ≥ 0.75” (i.e., low NDFI 

values) were classified as [Forest] Degradation. This forest degradation class represents canopy 

damage areas created by selective logging and/or forest fires, i.e., only canopy damage >25% can be 

detected. The Water class was obtained with low VGVs and low VNPV+Soil abundance (Figure 4). All the 

variables and the decision tree rules selected translate into expected biophysical responses of the 

environments we aimed to map. 

Figure 4. Empirical decision tree used for classifying deforestation and forest degradation. 

NDFI variable was rescaled to 0–200, meaning that VNDFI ≥ 175 translates to VNDFI ≥ 0.75. 

 

3.4. Post-Classification  

Post-classification processing included application of spatial and temporal image filters. The spatial 

filters implemented in ImgTools reduced classification noise based on area label size. For that, we used 

the label region function implemented in the Interactive Data Language (IDL version 5.0) to identify 

regions in the classified images formed by each individual class. The label region function assigns the 

area size of the regions for each specific thematic class. Then, we set minimum and maximum area 
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values to identify spurious or individual pixels in the classified images and substitute them by a 

majority class neighborhood values. For example, isolated classified regions with 1–3 pixels were 

reclassified using this procedure which smoothed small features such as individual treefalls or forest 

edge pixels that would otherwise inflate forest degradation amounts. A temporal filter was used to 

correct for disallowed classification transitions over time (e.g., a forest to non-forest to forest transition 

occasionally seen along forest edges) and to remove cloud pixels when possible [16]. For example, if a 

given class (forest or non-forest) existed both before and after an area was classified as being cloud, 

then no land cover change was believed to have occurred during the short interval (i.e., <3 years). 

Therefore, clouds were removed and reassigned to the appropriate class.  

3.5. Accuracy Assessment 

For accuracy assessment, we used the protocol defined by [34]. This protocol applies a series of 

procedures for statistical selection of reference samples, evaluation and labeling (or classification) 

rules of reference data, and unbiased corrections of the reference data (e.g., geolocation, mixed pixels, 

edges, and reference data classification errors), to eliminate errors in the processing. Very high spatial 

resolution SPOT 2.5 m pixel imagery was used to generate geolocated points to assess the accuracy of 

the classified images. These images were acquired from 2007 to 2010 and these dates were matched 

with the classified images dates for comparing referenced data and classified results (Figure 5).  

Figure 5. Location of SPOT very high-resolution imagery and forest transects used for 

accuracy assessment of forest, deforestation and forest degradation classes. 

 

A total of 1,980 points were interpreted by five independent image analysts covering about 10% of 

the area of the states of Pará (n = 500) and Mato Grosso (n = 1,480), where most degraded forests are 

expected [6]. Because the random selection of points on the SPOT imagery used for the accuracy 
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assessment did not include enough points in degraded forests (40 points only), we added independent 

forest transects (n = 151) in this analysis. Ground collected transects covering 10 × 500 m (0.5 ha), 

were used from two sources: [35] (n = 49) and Barlow (unpublished data; 48 transects and 102 data 

points along them). The combined reference points were used to obtain an error matrix and statistical 

measures of accuracy. Of the total points (2,131 obtained from combined SPOT 2.5 imagery and forest 

transects), only 1,605 (1,454 SPOT plus 151 transects) points were used in the final accuracy 

assessment. Several points occurred in water bodies (n = 231) and were not included in the analysis 

because the map accuracy for this class was very high and this would inflate the overall map accuracy. 

The other points were removed due to the lack of matching dates between the Landsat and SPOT 

scenes, geolocation errors, or mixed classes (e.g., 50% of forest and 50% of deforestation) or cloud 

cover either in the Landsat or SPOT scene. Using low quality reference data can result in drastic 

underestimates of the accuracy assessments of results and these types of corrections for reference data 

have been proposed to avoid this problem. We also evaluated the impact on the accuracy assessment 

results when applying the corrections on the reference data [34]. 

Classification labeling rules were applied to the SPOT 2.5 imagery to assign thematic classes to 

sample units, defined as the Landsat pixel size. We used slightly modified class definitions proposed in 

a previous study [34] to map the reference data, as follows: (i) Primary forest: trees >20 m in height, 

continuous canopy; (ii) Second-growth forest: shrubs >2 m in height, trees <2 m height, perennial 

crops; (iii) Pasture: shrubs <2 m in height, herbaceous vegetation, sparse canopy, annual crops; 

(iv) Urban/bare Soil: human-built structures, roads, bare soil; (v) Water: open water surfaces. In our 

final classification scheme, we merged the Pasture and Urban/Bare Soil classes with the Deforestation 

class, and the Forest Degradation class was classified as discontinuous Primary Forest with 

perforations with exposed soils and canopy damage >25%. The majority class rule was applied to 

assign a final class to mixed pixels. Pixels with equal class proportions were assigned as mixed pixels 

and were not used in the accuracy assessment process. The forest transects were labeled based on 

ground assessment as two classes: Forest and Forest Degradation. As a result, we compared two 

thematic maps to assess the map accuracy: one obtained with Landsat imagery and another with the 

reference labeling process described above. Figure 6 illustrates how labeling of reference data (SPOT 

2.5 imagery) was conducted and the comparison with the map results from Landsat.  

3.6. Estimating the Annual Rate of Forest Changes 

Annual rates of the area of forest affected by deforestation or forest degradation processes, in any 

given year, are expressed in absolute terms of square kilometers per year. Brazil uses August 1 as the 

reference date for estimating each year’s annual deforestation rates in its PRODES products [2]. To 

provide comparable estimates, we also adopted the period of 1 August to 31 July as the reference 

period for each year. Because of frequent regional cloudiness [36], haze and the 16-day repeat cycle of 

Landsat satellite imagery, monitoring efforts in the Brazilian Amazon, including this study, cannot 

always acquire imagery on or near the reference period date used for estimating the annual rate. It is 

thus necessary to project measurements made with satellite data for the remaining period of reference 

by using mathematical methods. 
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Figure 6. Example of annual deforestation and forest degradation classification results 

obtained with a temporal series of Landsat images using the methodology presented in this 

study (a). For base year (2000), we mapped all of the areas already deforested and without 

forest cover (e.g., rivers, savannas) to generate a reference forest map (including areas 

already degraded). Early state secondary forests were removed from the forest baseline 

map by applying a mask of deforested areas identified by PRODES up to 2000 [2]. The 

annual maps are used to generate maps of age of deforestation (b) and forest degradation, 

and forest degradation frequency maps. All this information was produced for the entire 

forest biome of the Brazilian Amazon (c).  

 

We adopted the method proposed by the Food Administration Organization [37] to estimate annual 

deforestation rates in this study. We calculated the annual percentage rate of forest cover lost using the 

method suggested by [38]. The area of forest lost to deforestation is assumed to decrease over time at 

an exponential rate, given by:  
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( , ) = 12 − 1 ×  (6)

where A  and A are the forest areas mapped in times t1 and t2, expressed in years, beginning with an 

initial year (t0 = 2,000). The result (r (t-1,t)) represents the percentage rate of forest loss normalized for 
the period between t2−t1 (in years). With the value of r it is possible to calculate the annual 

deforestation rate (Dt in km2/year) for the given reference period as: = × (1 − , ) (7)

For example, for t = 01/08/2001 and t – 1 = 01/08/2000 the annual deforestation rate in 

Equation (7) is obtained by: = × (1 − , ) (8)

where the rate r , 	is calculated using Equation 6, with acquisition dates and resulting area data 

from images obtained during 2000 and 2001. In the example above, A  is the initial forest area 

projected or observed on 1 August 2000. For subsequent years, D  is the annual deforestation rate, 
normalized for the reference period between the years t − 1 and t(2001,...,2010), and At-1 is given by At-2-Dt-1, 

for t (2001,...,2010). 

To calculate the annual rates for individual Amazonian states, we applied a mask of the state 

boundaries on a per scene basis, in order to apply this method only in the portions of a given state 

covered by the scene. For cases with gaps of one or more years between Landsat images, we assumed 

a steady rate of deforestation between observations, using the same estimate of r for all intervening 

years between the two acquired images. Deforestation observed in imagery after temporal gaps caused 

by cloud cover were distributed equally across the reference periods in which clouds occurred. For 

example, if a newly deforested area of X km2 is observed in 2003, but the area was obscured by clouds 

during 2001 and 2002, we assume that X/3 km2 of clearing happened in each of the three years 

between observations. 

The same methodology described above was applied for estimating the annual rate of forest 

degradation, discounting the annualized deforestation for each period of reference to obtain the area of 

remaining forest in the respective year. 

4. Results 

Our image processing methodology simultaneously mapped deforestation and forest degradation 

caused by logging activity and forest burning using Landsat satellite images. Methods that individually 

detect and estimate deforestation and forest degradation are prone to substantial uncertainty and 

confusion among classes due to differing classification thresholds. For example, severe forest 

degradation can be confused with intentional forest clearing in regional deforestation estimates [39] if 

forest damaging events are not accounted for in the classification process. Deforestation is an ongoing 

process of converting forested land to other land uses, such as pastures, agricultural fields, mining, or 

regional urbanization [3]. In deforestation there is near-complete removal of the original forest cover, 

while forest degradation events only partially and temporarily remove forest canopy cover. The forest 

change detection methodology we present in this study simultaneously maps deforestation and forest 
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degradation, reducing possible zones of “confusion” between these classes of land cover change 

(Figure 6a). Additionally, it provides information on deforestation and forest degradation ages, and of 

forest degradation frequency (Figure 6b), and was applied to the entire Amazon biome (Figure 6c). We 

present these results below and assess the accuracy of the proposed method to account for 

simultaneous mapping of deforestation and forest degradation. 

4.1. Accuracy Assessment 

We used a random selection of geolocated points from within the SPOT scenes but this process 

only produced a limited number of points for the forest degradation class (n = 26), insufficient for 

assessing classification accuracy. For this reason, we used independent forest transects to complement 

the imagery-based reference data and enable the adequate accuracy analysis. The overall accuracy for 

mapping forest, forest degradation and deforestation was 0.92 using either the SPOT 2.5 imagery as 

reference data (Table 1a) or the combination of this data with forest transects (Table 1b). However, 

using SPOT imagery alone as reference data indicated a very low user’s accuracy for the forest 

degradation class due to the low sample size (50%). Combining forest transect data with SPOT 2.5 

created a more robust reference dataset to assess this class, leading to a more realistic user’s accuracy 

for the forest degradation class of 0.76 (Table 1b) within the range of accuracy reported in previous 

works [6,13]. The impact on the accuracy assessment results when applying the corrections to 

reference data was also quantified. The overall accuracy went from 0.79 with no correction to 0.92 

with all types of corrections applied (Table 1c). Even though we used a large random data set of 

reference data, combining SPOT 2.5 imagery and independent field transects, a more robust 

probability based sample for validation, implemented over larger areas and different image dates, 

would provide improved validation results. 

4.2. Annual Rates of Deforestation and Degradation 

The annual deforestation and forest degradation estimates for the 10-year study period are presented 

for each Amazonian state and for the region as a whole in Table 2. Rates were annualized on scene by 

scene bases (see methods) to normalize the variable observation dates to each year’s annual reference 

period in accord with standard practices to provide comparable interannual results (Figure 7a). 

For the interval between 2000 and 2010, we estimate 169,074 km2 of Amazonian forest was 

deforested (Table 2a). An additional 50,815 km2of forest was altered by timber harvesting and/or 

burning, equivalent to 30% of the area converted by deforestation (Table 2b).  There was a substantial 

range of annual deforestation rates, with the peak deforestation rate occurring in 2004 (24,446 km2/yr), 

and the lowest rate in 2010 (5,496 km2/yr). Annual rates of deforestation have trended noticeably 

lower since 2005 (Table 2a). Annual forest degradation rates did not vary as much or have any 

noticeable trend, with a peak of 8,396 km2/yr in 2008 and a minimum annual rate of 3,731 km2/yr in 

2010 (Table 2b). Degradation rates corresponded to a low percentage of 17% of deforestation rates in 

2003 and a high of 68% in both 2008 and 2010.  
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Table 1. Accuracy assessment of the classification results using high spatial resolution 

SPOT data only (a), SPOT and forest transects (b) and the impact of applying corrections 

to the SPOT reference data on the accuracy results (c). 

(a) 
Reference Data (SPOT)   

 Land Cover  

Class 
Forest Degradation Deforestation Row Total 

User’s  

Accuracy 

User’s Standard 

Deviation 

Forest 884 2 22 908 0.97 0.006 

Degradation 6 20 14 40 0.50 0.080 

Deforestation 60 14 432 506 0.85 0.016 

Column Total 950 36 468 1,454 - - 

Producer's Accuracy 0.93 0.56 0.92 - - - 

Producer's Standard Deviation 0.008 0.084 0.013 - - - 

Overall Accuracy = 0.92 (0.007)  

(b) 
Reference Data (SPOT + Transects)   

Land Cover  

Class 
Forest Degradation Deforestation Row Total 

User’s  

Accuracy 

User’s Standard 

Deviation 

Forest 942 11 22 975 0.97 0.005 

Degradation 8 102 14 124 0.82 0.035 

Deforestation 60 14 432 506 0.85 0.016 

Column Total 1,010 127 468 1,605 - - 

Producer’s Accuracy 0.93 0.80 0.92 - - - 

Producer’s Standard Deviation 0.008 0.036 0.013 - - - 

Overall Accuracy = 0.92 (0.007)  

(c) 
Influence of Reference Data (SPOT) “Corrections” on Map Accuracy 

Version Correction to Reference Data Set Number of Samples % Overall Agreement

1 None 1,725 0.79 

2 Geocorrection 1,644 0.83 

3 Geocorrection; Map edge 1,600 0.86 

4 Geocorrection; Mixed pixel; Map edge 1,594 0.86 

5 Geocorrection; Change pixel 1,502 0.89 

6 Geocorrection; Change pixel; Mixed pixel 1,498 0.89 

7 Geocorrection; Change pixel; Mixed pixel; Map edge 1,454 0.92 

Excluded Samples 
Reason for Exclusion Number of Samples

No Data 3 

Geocorrection 81 

Change pixel 142 

Mixed pixel 4 

Map edge 44 

Cloud 21 

Water 231 
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The 10-year series of deforestation rates show high and fairly stable rates of deforestation for the 

2001–2005 period (average 21,893 km2/yr) with substantially reduced (46% lower) and declining 

deforestation rates from 2006 to 2010 (average 11,922 km2/yr). Forest degradation rates did not show 

the same pattern, with an average annual rate of 4,627 km2/yr for 2001–2005 and a larger 5,536 km2/yr 

for 2006–2010, a 20% increase (Figure 7a). 

The states contributing the greatest amounts of deforestation over the total period analyzed were 

Pará (35%) and Mato Grosso (31%), followed by Rondônia (16%) and Amazonas (10%) (Figure 7b). 

The state of Mato Grosso led in terms of forest degradation, contributing 48% of the total for the 

decade studied. Pará was second ranked in forest degradation with 32%, while Rondônia (7%) and 

Acre (5%) contributed much less (Figure 7c). 

Table 2. Estimates of annual rates of deforestation (a) and forest degradation (b) obtained 

with Landsat images for the period of 2000–2010, using the image classification 

methodology presented in this study. 

(a) Annual rates of deforestation (km2/yr) 

States 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total 

Acre 487 948 640 819 851 521 545 256 495 203 5,765 

Amapá* - - - - - - - - - - - 

Amazonas 1,482 2,475 1,682 2,010 2,031 1,673 1,306 1,115 1,535 917 16,227 

Maranhão 676 371 402 329 524 389 433 588 918 236 4,866 

Mato Grosso 5,905 7,527 8,735 10,463 6,959 4,142 3,026 3,055 1,215 1,221 52,249 

Pará 4,516 8,139 6,194 6,664 7,625 6,184 5,888 5,284 6,693 2,480 59,668 

Rondônia 3,525 2,983 3,752 3,665 3,973 2,820 2,316 1,835 1,025 346 26,241 

Roraima 507 749 752 431 170 176 194 189 40 0 3,209 

Tocantins 104 150 71 65 109 80 43 81 54 93 849 

Amazon 17,203 23,342 22,229 24,446 22,242 15,986 13,751 12,403 11,976 5,496 169,074 

(b) Annual rates of forest degradation (km2/yr) 

States 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 Total

Acre 157 441 185 65 48 731 549 282 133 71 2,663 

Amapá * - - - - - - - - - - - 

Amazonas 94 118 146 232 224 206 208 236 151 41 1,656 

Maranhão 58 171 25 20 154 382 51 677 145 122 1,806 

Mato Grosso 3,033 2,198 2,208 2,459 2,359 1,878 1,516 4,956 2,331 1,625 24,562 

Pará 1,007 1,382 1,114 1,707 1,509 2,659 1,566 1,829 1,654 1,785 16,212 

Rondônia 293 408 179 541 380 601 453 378 269 70 3,573 

Roraima 58 10 8 15 8 7 7 6 0 0 118

Tocantins 27 24 23 29 19 20 17 33 19 16 226 

Amazon 4,726 4,754 3,887 5,068 4,700 6,483 4,367 8,396 4,703 3,731 50,815

* It was not possible to estimate the annual rate for Amapá state due to the low number of observations with Landsat 
images during the period analyzed (only 27 out of 143 possible scenes with low cloud cover). 
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Figure 7. Historical changes of deforestation and forest degradation in the Brazilian 

Amazon for the period of 2000–2010 as obtained with the annualization method described 

in the methods (a). In (b) and (c) we present the Amazon state contributions of 

deforestation and forest degradation, respectively. 

  

5. Discussion 

Due to their scientific, conservation, and climate policy importance, forest degradation processes have 

been extensively studied in the Brazilian Amazon at local and regional scales through field studies [40], 

remote sensing observations [4,6,27], and models of ecological and land cover change [5,12,41]. To 

date, however, there have been no basin-wide estimates of the amount of forest affected by these 

processes. In a review of the remote sensing techniques applied for such work in the Brazilian 

Amazon, our research group has proposed [3] a framework for integrating deforestation and forest 

degradation monitoring activities to assess annual rates of both that would be capable of accounting for 

forest degradation age (time since disturbance) and recurrence rates (multiple logging and/or fire 

events) that could be used to better estimate remaining forest carbon stocks, and forest fragmentation. 

The methods and results presented here demonstrate the potential of this monitoring framework to 

improve our understanding of the spatial and temporal dynamics of both deforestation and forest 

degradation processes. 

For the same time period assessed in this study, the PRODES deforestation mapping system 

reported a deforested area of 165,310 km2 in the Brazilian Amazon [42], 2% less than our estimate 

(169,074 km2). Differences between the total deforestation detected by the two monitoring systems are 

relatively small, but the intra-annual differences are high and have grown over time, with an absolute 

average difference of 2,270 km2/year (Figure 7a). Differences between estimates from the two 

monitoring systems may result in part from any or all of the following factors: scale of monitoring, 

which is more detailed in the system we present (30m vs. 60m); misclassification of forest degradation 
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as deforestation; and estimation differences caused by the different dates of the annual images selected 

and varied annualization methods used to derive the annual deforestation rates from the satellite-based 

observations. Regardless, deforestation estimated by both monitoring systems presented similar 

patterns of high deforestation rates from 2001 to 2005, followed by a notable drop from 2006 to 2010. 

Our method has the added benefit of quantitatively mapping degraded forests in addition to annual 

deforestation integrated in the same method. 

Forest degradation affected an area equivalent to 30% of the total area deforested during the period 

analyzed, with an average of 5,536 km2 affected per year. Both selective logging and forest fires can 

impoverish forests in terms of biodiversity and carbon stocks [8,19,43], and thus it is critically 

important that these events are monitored annually to enable the effective establishment of Reduced 

Emissions from Deforestation and Forest Degradation (REDD+) programs [44].  

The method we present here for using Landsat satellite images to calculate annual rates of 

deforestation and forest degradation could become a much needed monitoring tool, both at the  

basin-scale and locally, to evaluate the performance of protected areas [45] and land management 

policies in controlling deforestation and resisting forest degradation. While our results show the 

encouraging trend of reduced deforestation rates in the Brazilian Amazon, they also illustrate the 

growing importance of forest degradation in recent years, averaging 49% of corresponding 

deforestation rates since 2006, vs. 21% in previous years. Annual forest degradation rates have 

increased by an average of 20% in recent years, even as deforestation rates have dropped. This same 

basin-wide trend has been seen in the increasing percentage of regional carbon loss attributable to 

forest degradation along edges of fragmented forests (growing at >3,000 km2/yr 2006–2010), as 

landscape patterns have become more stable in recent years [11]. 

6. Conclusions 

The combined area of forest that is being degraded by selective logging and forest fires each year 

may now equal or exceed the area being deforested, resulting in ever more fragmented landscapes. 

Basin-wide accounting of these processes is a necessary compliment to deforestation monitoring 

efforts if effective land management is to be practiced in this region. Our method only detects forest 

disturbances that results in >25% canopy opening. Therefore, very low intensity forest degradation 

created by non-mechanized logging, charcoal harvesting and other activities could not be effectively 

monitored using our methodology with Landsat imagery. More detailed spatial resolution imagery has 

the potential to detect and map these types of low intensity forest disturbances. The results from this 

research can now be used to investigate and quantify the possible interactions and transitions between 

classes of forest, forest degradation and deforestation, as well as the recurrence rates of disturbance 

events, providing for more effective modeling of how the ecological impacts and carbon emissions 

vary as a function of protected area status or associated land uses within this vital biome. With the new 

data becoming available from the recently launched Landsat 8 (LDCM: Landsat Data Continuity 

Mission), we intend to use this approach as the base for establishing an operational forest monitoring 

program in Brazil that can provide greater understanding of regional land cover dynamics and more 

precise estimates of historic carbon emission rates. 
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